/EOS/OSBORNE

ブロックフォーマットキーワード R.K. OsborneによるOsborne状態方程式(“2次状態方程式”とも呼ばれる)を記述します。

フォーマット

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/EOS/OSBORNE/mat_ID/unit_ID
eos_title
A1 A2 B0 B1 B2
C0 C1 D0 P0  
ρ 0        

定義

フィールド 内容 SI 単位の例
mat_ID 材料識別子

(整数、最大10桁)

 
unit_ID 単位識別子

(整数、最大10桁)

 
eos_title 状態方程式のタイトル。

(文字、最大100文字)

 
A1 Osborneパラメータ。

(実数)

[ Pa 2 ]
A2 Osborneパラメータ。

(実数)

[ Pa 2 ]
B0 Osborneパラメータ。

(実数)

[ Pa ]
B1 Osborneパラメータ。

(実数)

[ Pa ]
B2 Osborneパラメータ。

(実数)

[ Pa ]
C0 Osborneパラメータ。

(実数)

 
C1 Osborneパラメータ。

(実数)

 
D0 Osborneパラメータ。

(実数)

[ Pa ]
P0 初期圧力

(実数)

[ Pa ]
ρ 0 参照密度

(実数)

[ kg m 3 ]

パラメータ一覧

各材料について単位系{g, cm, µs}でのパラメータを一覧で示します:
材料 ρ 0 A 1 A 2 B 0 B 1 B 2 C 0 C 1 D 0
ベリリウム 1.845 0.9512 0.3453 0.9269 2.9484 0.5080 0.5644 0.6204 0.8
ホウ素 2.34 1.8212 4.3509 0.3764 0.3287 1.0801 0.5531 0.6346 .25
黒鉛 2.25 0.1608 0.1619 0.8866 0.5140 1.4377 0.5398 0.5960 0.5
マグネシウム 1.735 0.5665 0.3343 2.2178 0.8710 0.4814 0.4163 0.5390 1.5
チタン 4.51 1.9428 0.6591 1.8090 2.6115 1.7984 0.4003 0.5182 1.8
1.00 0.000384 0.001756 0.01312 0.06265 0.21330 0.5132 0.6761 0.02
プレキシガラス 1.18 0.006199 0.015491 0.14756 0.05619 .050504 0.5575 0.6151 0.1
ポリスチレン 1.04 0.038807 0.043646 0.77420 0.03610 0.46048 0.5443 0.6071 0.5
ポリスチレン 0.913 0.007841 0.009766 0.19257 0.10257 0.31592 0.5748 0.6230 0.1
マイカルタ 1.39 0.016164 0.023579 0.34261 0.15107 0.43434 0.0540 0.0612 0.15
シラスティック 1.43 0.004794 0.04684 0.33969 0.02377 0.50767 0.4925 0.5721 0.3
アルミニウム 2.702 1.1867 0.7630 3.4448 1.5451 0.96430 0.43382 0.54873 1.5
Copper 8.90 4.9578 3.6884 7.4727 11.519 5.5251 0.39493 0.52883 3.6
7.86 7.78 31.18 9.591 15.676 4.634 0.3984 0.5306 9.0
タングステン 19.17 21.67419 14.93338 10.195827 12.263234 9.6051515 0.33388437 0.48248861 7.0
Steel 7.9 4.9578323 3.6883726 7.4727361 11.519148 5.521138 0.39492613 0.52883412 3.6
ウラン 2.806 2.4562457 3.6883726 7.47361 11.519148 5.521138 0.39492613 0.52883412 0.6

例(アルミニウム)

#RADIOSS STARTER
/UNIT/1
unit for mat
                   g                  cm                 mus
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/HYDPLA/7/1
ALUMINIUM-JCOOK
#              RHO_I               RHO_0
               2.702               2.702
#                  E                  nu
                .734                0.33
#                  a                   b                   n             eps_max           sigma_max
               .0024               .0042                  .8                   0              .00680
#               Pmin                 Psh
              -.0223                   0
/EOS/OSBORNE/7/1
OSBORNE-EOS-ALUMINIUM
#                 A1                  A2                  B0                  B1                  B2          
              1.1867              0.7630              3.4448              1.5451             0.96430 
#                 C0                  C1                  D0                  P0                  
             0.43382             0.54873                 1.5                 0.1                   
#               RHO0
               2.702
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

コメント

  1. この状態方程式はR.K. Osborneによるものです: (1)
    P ( μ , E ) = A 1 μ + A 2 μ | μ | + ( B 0 + B 1 μ + B 2 μ 2 ) E + ( C 0 + C 1 μ ) E 2 E + D 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaciiuamaabmaapaqaa8qacqaH8oqBcaGGSaGaamyraaGaayjkaiaa wMcaaiabg2da9maalaaapaqaa8qacaWGbbWdamaaBaaaleaapeGaaG ymaaWdaeqaaOWdbiabeY7aTjabgUcaRiaadgeapaWaaSbaaSqaa8qa caaIYaaapaqabaGcpeGaeqiVd02aaqWaa8aabaWdbiabeY7aTbGaay 5bSlaawIa7aiabgUcaRmaabmaapaqaa8qacaWGcbWdamaaBaaaleaa peGaaGimaaWdaeqaaOWdbiabgUcaRiaadkeapaWaaSbaaSqaa8qaca aIXaaapaqabaGcpeGaeqiVd0Maey4kaSIaamOqa8aadaWgaaWcbaWd biaaikdaa8aabeaak8qacqaH8oqBpaWaaWbaaSqabeaapeGaaGOmaa aaaOGaayjkaiaawMcaaiaadweacqGHRaWkdaqadaWdaeaapeGaam4q a8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGHRaWkcaWGdbWdam aaBaaaleaapeGaaGymaaWdaeqaaOWdbiabeY7aTbGaayjkaiaawMca aiaadweapaWaaWbaaSqabeaapeGaaGOmaaaaaOWdaeaapeGaamyrai abgUcaRiaadseapaWaaSbaaSqaa8qacaaIWaaapaqabaaaaaaa@682A@
    ここで、
    E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyraaaa@36D6@
    内部エネルギーを初期体積で割った値
    E = E i n t V 0 = ρ 0 e MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyraiabg2da9maalaaapaqaa8qacaWGfbWdamaaBaaaleaapeGa amyAaiaad6gacaWG0baapaqabaaakeaapeGaamOva8aadaWgaaWcba Wdbiaaicdaa8aabeaaaaGcpeGaeyypa0JaeqyWdi3damaaBaaaleaa peGaaGimaaWdaeqaaOWdbiaadwgaaaa@430A@
    μ
    ρ ρ 0 1 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape WaaSaaa8aabaWdbiabeg8aYbWdaeaapeGaeqyWdi3damaaBaaaleaa peGaaGimaaWdaeqaaaaak8qacqGHsislcaaIXaaaaa@3CB0@
    A 1 , A 2 , B 0 , B 1 , B 2 , C 0 , C 1 , D 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyqa8aadaWgaaWcbaWdbiaaigdaa8aabeaak8qacaGGSaGaamyq a8aadaWgaaWcbaWdbiaaikdaa8aabeaak8qacaGGSaGaamOqa8aada WgaaWcbaWdbiaaicdaa8aabeaak8qacaGGSaGaamOqa8aadaWgaaWc baWdbiaaigdaa8aabeaak8qacaGGSaGaamOqa8aadaWgaaWcbaWdbi aaikdaa8aabeaak8qacaGGSaGaam4qa8aadaWgaaWcbaWdbiaaicda a8aabeaak8qacaGGSaGaam4qa8aadaWgaaWcbaWdbiaaigdaa8aabe aak8qacaGGSaGaamira8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@4A73@
    定数パラメータ
  2. 初期圧力は、 P ( 0 , E 0 ) = P 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaciiuamaabmaapaqaa8qacaaIWaGaaiilaiaadweapaWaaSbaaSqa a8qacaaIWaaapaqabaaak8qacaGLOaGaayzkaaGaeyypa0Jaamiua8 aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3EDB@ となるように E 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@37EA@ を計算するために使用されます。
  3. Radiossにより流体力学的圧力の計算に用いられ、右記の材料則と適合性のある状態方程式:
    • /MAT/LAW3 (HYDPLA)
    • /MAT/LAW4 (HYD_JCOOK)
    • /MAT/LAW6 (HYDROまたはHYD_VISC)
    • /MAT/LAW10 (DPRAG1)
    • /MAT/LAW12 (3D_COMP)
    • /MAT/LAW49 (STEINB)
    • /MAT/LAW102 (DPRAG2)
    • /MAT/LAW103 (HENSEL-SPITTEL)