Ityp = 2

ブロックフォーマットキーワード この材料則を使用すれば、その状態を直接設定することにより、材料流入 / 流出をモデル化することができます。入力カードは/MAT/LAW11 (BOUND)と似ていますが、乱流パラメータを定義するための2つの新しい行を導入します。


law11_ityp2
図 1.

フォーマット

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/B-K-EPS/mat_ID/unit_ID
mat_title
ρ i ρ 0            
Ityp   Psh FscaleT        
Ityp = 2: 一般流入 / 流出
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
空白のフォーマット
fct_ID ρ                  
fct_IDp   P0              
fct_IDE   E0              
ρ 0 κ 0 ρ 0 ε 0 fct_IDk fct_IDe        
C μ σ κ σ ε P r / P r t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGYbaabeaakiaad+cacaWGqbWaaSbaaSqaaiaadkhacaWG 0baabeaaaaa@3B9E@    
fct_IDT fct_IDQ                

定義

フィールド 内容 SI 単位の例
mat_ID 材料識別子

(整数、最大10桁)

 
unit_ID 単位識別子.

(整数、最大10桁)

 
mat_title 材料のタイトル

(文字、最大100文字)

 
ρ i 初期密度 3

(実数)

[ kg m 3 ]
ρ 0 E.O.S(状態方程式)で使用される基準密度

デフォルト ρ 0 = ρ i (実数)

[ kg m 3 ]
Ityp 境界条件タイプ 1
= 0
気体流入(停滞点データから)
= 1
液体流入(停滞点データから)
= 2
一般流入 / 流出
= 3
サイレント境界

(整数)

 
Psh 圧力シフト 3

(実数)

[ Pa ]
FscaleT 時間スケールファクター 3

(実数)

 
fct_ID ρ 境界密度用の関数 f ρ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOza8aadaWgaaWcbaWdbiabeg8aYbWdaeqaaOWdbmaabmaapaqa a8qacaWG0baacaGLOaGaayzkaaaaaa@3BCA@ 識別子 3
= 0
ρ ( t ) = ρ i MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3aaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacqGH9aqp cqaHbpGCpaWaaSbaaSqaa8qacaWGPbaapaqabaaaaa@3E7B@
> 0
ρ ( t ) = ρ i f ρ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3aaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaacqGH9aqp cqaHbpGCpaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaeyyXICTaae Oza8aadaWgaaWcbaWdbiabeg8aYbWdaeqaaOWdbmaabmaabaGaamiD aaGaayjkaiaawMcaaaaa@467E@

(整数)

 
fct_IDp 境界圧力用の関数 f P ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOza8aadaWgaaWcbaWdbiaadcfaa8aabeaak8qadaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaaaa@3ADF@ 識別子 3
= 0
P ( t ) = P 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiuamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Ja amiua8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3C71@
> 0
P ( t ) = P 0 f P ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadcfadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaiabg2da 9iaadcfapaWaaSbaaSqaa8qacaaIWaaapaqabaGcpeGaeyyXICTaae Oza8aadaWgaaWcbaWdbiaadcfaa8aabeaak8qadaqadaWdaeaapeGa amiDaaGaayjkaiaawMcaaaaa@441B@

(整数)

 
P0 初期圧力 3

(実数)

[ Pa ]
fct_IDE 境界エネルギー用の関数 f E ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOza8aadaWgaaWcbaWdbiaadweaa8aabeaak8qadaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaaaa@3AD4@ 識別子 3
= 0
E ( t ) = E 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyramaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Ja amyra8aadaWgaaWcbaWdbiaaicdaa8aabeaaaaa@3C5B@
> 0
E ( t ) = E 0 f E ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyramaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaGaeyypa0Ja amyra8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacqGHflY1caqGMb WdamaaBaaaleaapeGaamyraaWdaeqaaOWdbmaabmaapaqaa8qacaWG 0baacaGLOaGaayzkaaaaaa@4387@

(整数)

 
E0 内部エネルギー 3 6

(実数)

[ Pa ]
ρ 0 κ 0 初期乱流エネルギー

(実数)

[ J ]
ρ 0 ε 0 初期乱流散逸

(実数)

[ J ]
fct_IDk 乱流モデリングの関数 f κ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOza8aadaWgaaWcbaWdbiabeQ7aRbWdaeqaaOWdbmaabmaapaqa a8qacaWG0baacaGLOaGaayzkaaaaaa@3BBC@ 識別子
= 0
κ = κ a d j a c e n t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOUdSMaeyypa0JaeqOUdS2damaaBaaaleaapeGaamyyaiaadsga caWGQbGaamyyaiaadogacaWGLbGaamOBaiaadshaa8aabeaaaaa@4232@
> 0
κ = κ 0 f κ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOUdSMaeyypa0JaeqOUdS2damaaBaaaleaapeGaaGimaaWdaeqa aOWdbiabgwSixlaabAgapaWaaSbaaSqaa8qacqaH6oWAa8aabeaak8 qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaaa@439E@

(整数)

 
fct_ID ε (オプション)乱流モデリングの関数 f ε ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOza8aadaWgaaWcbaWdbiabew7aLbWdaeqaaOWdbmaabmaapaqa a8qacaWG0baacaGLOaGaayzkaaaaaa@3BB1@ 識別子
= 0
ε = ε a d j a c e n t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTduMaeyypa0JaeqyTdu2damaaBaaaleaapeGaamyyaiaadsga caWGQbGaamyyaiaadogacaWGLbGaamOBaiaadshaa8aabeaaaaa@421C@
> 0
ε = ε 0 f ε ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyTduMaeyypa0JaeqyTdu2damaaBaaaleaapeGaaGimaaWdaeqa aOWdbiabgwSixlaabAgapaWaaSbaaSqaa8qacqaH1oqza8aabeaak8 qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaaa@437D@

(整数)

 
C μ 乱流粘性係数

デフォルト = 0.09(実数)

 
σ κ κ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqOUdSgaaa@37BE@ パラメータの拡散係数

デフォルト = 1.00(実数)

 
σ ε ε ˙ パラメータの拡散係数

デフォルト = 1.30(実数)

 
P r / P r t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGYbaabeaakiaad+cacaWGqbWaaSbaaSqaaiaadkhacaWG 0baabeaaaaa@3B9E@ 層流プラントル数(デフォルトは0.7)と乱流プラントル数(デフォルトは0.9)の比率

(実数)

 
fct_IDT 流入温度用の関数 f T ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOza8aadaWgaaWcbaWdbiaadsfaa8aabeaak8qadaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaaaa@3AE3@ 識別子
= 0
T = Tadjacent
= n
T = T 0 f T ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamivaiabg2da9iaadsfapaWaaSbaaSqaa8qacaaIWaaapaqabaGc peGaeyyXICTaaeOza8aadaWgaaWcbaWdbiaadsfaa8aabeaak8qada qadaWdaeaapeGaamiDaaGaayjkaiaawMcaaaaa@4113@

(整数)

 
fct_IDQ 流入熱流束用の関数 f Q ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaaeOza8aadaWgaaWcbaWdbiaadgfaa8aabeaak8qadaqadaWdaeaa peGaamiDaaGaayjkaiaawMcaaaaa@3AE0@ 識別子
= 0
強制流束なし
= n
Q = f Q ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyuaiabg2da9iaabAgapaWaaSbaaSqaa8qacaWGrbaapaqabaGc peWaaeWaa8aabaWdbiaadshaaiaawIcacaGLPaaaaaa@3CBC@

(整数)

 

例(気体)

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/B-K-EPS/3
GAS INLET (unit: kg_m_s)
#              RHO_I
               .3828
#     ITYP                           Psh         Fscale_T
         2
#blank line
#  fct_RHO
         1
#    fct_P                           P_0
         0
#    fct_E                           E_0
         1                        253300
#             Rho0k0            Rho0Eps0     fct_k   fct_eps
                  20                   0         1         0
#                Cmu             Sigma-k       Sigma-epsilon              Pr/Prt
                   0                   0                   0                   0
# fct_T        fct_Q
/ALE/MAT/3
#     Modif. factor.
                   0
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/1
CST
#                  X                   Y
                   0                   1
              1.0E20                   1
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#enddata
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

コメント

  1. 指定された状態が流入境界要素に直接強制されます。これが次の流入状態につながります。
    (1)
    ρ i n = ρ i f ρ ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaeqyWdi3damaaBaaaleaapeGaamyAaiaad6gaa8aabeaak8qacqGH 9aqpcqaHbpGCpaWaaSbaaSqaa8qacaWGPbaapaqabaGcpeGaaeOza8 aadaWgaaWcbaWdbiabeg8aYbWdaeqaaOWdbmaabmaapaqaa8qacaWG 0baacaGLOaGaayzkaaaaaa@4407@
    (2)
    P in = P 0 f P ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaadMgacaWGUbaapaqabaGcpeGaeyyp a0Jaamiua8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaqGMbWdam aaBaaaleaapeGaamiuaaWdaeqaaOWdbmaabmaapaqaa8qacaWG0baa caGLOaGaayzkaaaaaa@4112@
    (3)
    E in = ( ρe ) in = E 0 f E ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaadMgacaWGUbaapaqabaGcpeGaeyyp a0ZaaeWaa8aabaWdbiabeg8aYjaadwgaaiaawIcacaGLPaaapaWaaS baaSqaa8qacaWGPbGaamOBaaWdaeqaaOWdbiabg2da9iaadweapaWa aSbaaSqaa8qacaaIWaaapaqabaGcpeGaaeOza8aadaWgaaWcbaWdbi aadweaa8aabeaak8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawMca aaaa@489E@

    この定式化を使用すれば、境界節点上の速度を物理流入速度(/IMPVEL)と一致させることができます。/MAT/LAW11 - Ityp=0および1は、流入速度を強制する必要がない停滞点からの材料状態に基づきます。

  2. Pshパラメータを使用すれば、P-Pshにもなる出力圧力をシフトさせることができます。 P s h = P ( t = 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGtbGaamisaaqabaGccqGH9aqpcaWGqbWaaeWaaeaacaWG 0bGaeyypa0JaaGimaaGaayjkaiaawMcaaaaa@3EC3@ を使用している場合は、出力圧力が Δ P MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaaeiLdiaadcfaaaa@3B95@ (初期値は0.0)になります。
  3. 関数が定義されていない場合は、関連する量 P s t a g n a t i o n , ρ s t a g n a t i o n , T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaadohacaWG0bGaamyyaiaadEgacaWG UbGaamyyaiaadshacaWGPbGaam4Baiaad6gaa8aabeaak8qacaGGSa GaeqyWdi3damaaBaaaleaapeGaam4CaiaadshacaWGHbGaam4zaiaa d6gacaWGHbGaamiDaiaadMgacaWGVbGaamOBaaWdaeqaaOWdbiaacY cacaWGubaaaa@4E96@ またはQが一定になり、初期値に設定されます。ただし、すべての入力量 P s t a g n a t i o n , ρ s t a g n a t i o n , T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiua8aadaWgaaWcbaWdbiaadohacaWG0bGaamyyaiaadEgacaWG UbGaamyyaiaadshacaWGPbGaam4Baiaad6gaa8aabeaak8qacaGGSa GaeqyWdi3damaaBaaaleaapeGaam4CaiaadshacaWGHbGaam4zaiaa d6gacaWGHbGaamiDaiaadMgacaWGVbGaamOBaaWdaeqaaOWdbiaacY cacaWGubaaaa@4E96@ およびQは、指定された関数識別子を使用して時間依存関数として定義できます。横軸関数は、 f ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaciOzamaabmaapaqaa8qacaWG0baacaGLOaGaayzkaaaaaa@3999@ ではなく f ( F s c a l e t , t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape GaciOzamaabmaapaqaa8qacaWGgbGaam4CaiaadogacaWGHbGaamiB aiaadwgapaWaaSbaaSqaa8qacaWG0baapaqabaGcpeGaaiilaiaads haaiaawIcacaGLPaaaaaa@4122@ の使用につながるFscaleTパラメータを使用してスケーリングすることもできます。
  4. 熱モデリングを使用すれば、すべての熱データ( T 0 , ρ 0 C p MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamiva8aadaWgaaWcbaWdbiaaicdaa8aabeaak8qacaGGSaGaeqyW di3damaaBaaaleaapeGaaGimaaWdaeqaaOWdbiaadoeapaWaaSbaaS qaa8qacaWGWbaapaqabaaaaa@3DC8@ , …)を/HEATを使って定義できます。
  5. この境界材料則は、多相材料ALE /MAT/LAW37 (BIPHAS)および/MAT/LAW51 (MULTIMAT)と一緒に使用することができません。
  6. 固有体積エネルギーE E = E int V MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyraiabg2 da9maaliaabaGaamyramaaBaaaleaaciGGPbGaaiOBaiaacshaaeqa aaGcbaGaamOvaaaaaaa@3C8D@ として定義されます。
    ここで、
    E i n t MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyra8aadaWgaaWcbaWdbiaadMgacaWGUbGaamiDaaWdaeqaaaaa @3A0A@
    内部エネルギー。これは、/TH/BRICを使用して出力できます。

    固有質量エネルギーe e = E i n t / m MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVCI8FfYJH8YrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbb a9q8WqFfeaY=biLkVcLq=JHqpepeea0=as0Fb9pgeaYRXxe9vr0=vr 0=vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaabaaaaaaaaape Gaamyzaiabg2da9iaadweapaWaaSbaaSqaa8qacaWGPbGaamOBaiaa dshaa8aabeaak8qacaGGVaGaamyBaaaa@3DB9@ として定義されます。これが ρ e = E につながります。固有質量エネルギーeは、/ANIM/ELEM/ENERを使用して出力できます。これは、ユーザーモデリングによって相対エネルギーになる場合があります。