Iform = 5

ブロックフォーマットキーワード この境界を使用すれば、多相材料ALE則(定式化: Iform = 0、1、10または11)の液体流入条件をシミュレートできます。

境界副材料状態は、ユーザーによって指定された停滞点での状態から計算されます。この機能の使用時は、速度が数値的なスキームによって計算される強制速度(/IMPVEL)を使用する必要はありません。

ユーザーは、 υ =0の状態に相対する停滞点の状態 α s t a g n a t i o n = α 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHXoqyda WgaaWcbaGaam4CaiaadshacaWGHbGaam4zaiaad6gacaWGHbGaamiD aiaadMgacaWGVbGaamOBaaqabaGccqGH9aqpcqaHXoqydaWgaaWcba GaaGimaaqabaaaaa@4632@ ρ s t a g n a t i o n = ρ 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacqaHbpGCda WgaaWcbaGaam4CaiaadshacaWGHbGaam4zaiaad6gacaWGHbGaamiD aiaadMgacaWGVbGaamOBaaqabaGccqGH9aqpcqaHbpGCdaWgaaWcba GaaGimaaqabaaaaa@4674@ E s t a g n a t i o n = E 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbWaaS baaSqaaiaadohacaWG0bGaamyyaiaadEgacaWGUbGaamyyaiaadsha caWGPbGaam4Baiaad6gaaeqaaOGaeyypa0JaamyramaaBaaaleaaca aIWaaabeaaaaa@4488@ E MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGfbaaaa@3832@ はオプション)を提供する必要があります。1つの線形EOSより: P 0 = C 0 + C 1 μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaS baaSqaaiaaicdaaeqaaOGaeyypa0Jaam4qamaaBaaaleaacaaIWaaa beaakiabgUcaRiaadoeadaWgaaWcbaGaaGymaaqabaGccqaH8oqBaa a@403C@ ; したがって、 P s t a g n a t i o n = C 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqGqFfpeea0xe9vq=Jb9 vqpeea0xd9q8qiYRWxGi6xij=hbba9q8aq0=yq=He9q8qiLsFr0=vr 0=vr0db8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGqbWaaS baaSqaaiaadohacaWG0bGaamyyaiaadEgacaWGUbGaamyyaiaadsha caWGPbGaam4Baiaad6gaaeqaaOGaeyypa0Jaam4qamaaBaaaleaaca aIWaaabeaaaaa@4491@

各サイクルにおいて、Radiossは液体流入状態を、入力面における速度を用いてベルヌーイの定理が満足されるよう計算します。

law51_iform4
図 1.

フォーマット

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW51/mat_ID/unit_ID
mat_title
空白のフォーマット
Iform                  
#グローバルパラメータ
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Scaletime PEXT          
#材料1パラメータ
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
α 0 mat _ 1 ρ 0 mat _ 1 E 0 m a t _ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyramaaDaaaleaacaaIWaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaWLa8UaaGzaVlaayIW7caaIYaaaaaaa@45FB@ fct_ID1 fct_ID ρ 1 fct_IDE1  
C 1 m a t _ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@        
Δ P min mat _ 1 C 0 m a t _ 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@          
#材料2パラメータ
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
α 0 mat _ 2 ρ 0 mat _ 2 E 0 m a t _ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyramaaDaaaleaacaaIWaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaWLa8UaaGzaVlaayIW7caaIYaaaaaaa@45FB@ fct_ID2 fct_ID ρ 2 fct_IDE2  
C 1 m a t _ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@        
Δ P min mat _ 2 C 0 m a t _ 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@          
#材料3パラメータ
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
α 0 mat _ 3 ρ 0 mat _ 3 E 0 m a t _ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyramaaDaaaleaacaaIWaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaWLa8UaaGzaVlaayIW7caaIYaaaaaaa@45FB@ fct_ID3 fct_ID ρ 3 fct_IDE3  
C 1 m a t _ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@        
Δ P min mat _ 3 C 0 m a t _ 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba Gaam4qamaaDaaaleaacaaIXaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaaIYaaaaaaa@4157@          

定義

フィールド 内容 SI 単位の例
mat_ID 材料識別子

(整数、最大10桁)

 
unit_ID 単位識別子.

(整数、最大10桁)

 
mat_title 材料のタイトル

(文字、最大100文字)

 
Iform 定式化フラグ
= 5
液体流入(停滞点でのデータから計算される)

(整数)

 
Scaletime 入力の関数の横軸のスケールファクタ 2

デフォルト = 1(実数)

 
PEXT 外部(周囲)圧力 3

(実数)

[ Pa ]
α 0 mat _ i 初期体積比率 4

(実数)

 
ρ 0 mat _ i 停滞点での初期密度 1

(実数)

[ kg m 3 ]
E 0 m a t _ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyramaaDaaaleaacaaIWaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaWLa8UaaGzaVlaayIW7caaIYaaaaaaa@45FB@ 停滞点での初期エネルギー 5

(実数)

[ J m 3 ]
fct_IDαi (オプション)体積比率スケーリング関数 f α i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaabAgapaWaaSbaaSqaa8qacqaHXoqypaWaaSbaaWqaa8qacaWG PbaapaqabaaaleqaaOWdbmaabmaapaqaa8qacaWG0baacaGLOaGaay zkaaaaaa@3D61@ 識別子6
= 0
α m a t i ( t ) = α 0 m a t i
> 0
α m a t i ( t ) = α 0 m a t i f α i ( t )

(整数)

 
fct_ID ρ i (オプション)密度比率スケーリング関数 f ρ i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaabAgapaWaaSbaaSqaa8qacqaHbpGCpaWaaSbaaWqaa8qacaWG PbaapaqabaaaleqaaOWdbmaabmaapaqaa8qacaWG0baacaGLOaGaay zkaaaaaa@3D82@ 識別子。
= 0
P m a t i ( t ) = P 0 m a t i
> 0
P m a t i ( t ) = P 0 m a t i f P i ( t )

(整数)

 
fct_IDEi (オプション)エネルギー比率スケーリング関数 f E i ( t ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaabAgapaWaaSbaaSqaa8qacaWGfbWdamaaBaaameaapeGaamyA aaWdaeqaaaWcbeaak8qadaqadaWdaeaapeGaamiDaaGaayjkaiaawM caaaaa@3C8C@ 識別子。
= 0
E m a t i ( t ) = E 0 m a t i
> 0
E m a t i ( t ) = E 0 m a t i f E i ( t )

(整数)

 
C 1 m a t _ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyramaaDaaaleaacaaIWaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaWLa8UaaGzaVlaayIW7caaIYaaaaaaa@45FB@ 理想気体EOSの係数 5

(実数)

[ Pa ]
Δ P min mat _ i 流体力学的キャビテーション圧力 6

デフォルト = -10-30(実数)

[ Pa ]
C 0 m a t _ i MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqefqvATv2CG4uz3bIuV1wyUbqedmvETj2BSbqefm0B1jxALjhi ov2DaebbnrfifHhDYfgasaacH8WjY=viVeYth9vqqj=hEieu0xXdbb a9frFf0=yqFf0dbba91qpepeI8k8fiI+fsY=rqaqpepae9pg0Firpe pesP0xe9Fve9Fve9qapdbaGaaiGadiWaamaaceGaaqaacaqbaaGcba GaamyramaaDaaaleaacaaIWaaabaGaamyBaiaadggacaWG0bGaaGjc Vlaac+facaWLa8UaaGzaVlaayIW7caaIYaaaaaaa@45FB@ 理想気体EOSの係数 5

(実数)

[ Pa ]

コメント

  1. 停滞点から指定された気体状態 ρ stagnation , P stagnation が、液体流入状態の計算に使用されます。Bernoulliの定理が適用されます:(1)
    P stagnation = P in + ρ in v in 2 2
    これが、流入境界要素内の副材料状態につながります:(2)
    ρ i n = C 1 ρ s t a g n a t i o n C 1 + ρ s t a g n a t i o n v i n 2 2 ( 1 + C d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiabeg8aY9aadaWgaaWcbaWdbiaadMgacaWGUbaapaqabaGcpeGa eyypa0ZaaSaaa8aabaWdbiaadoeapaWaaSbaaSqaa8qacaaIXaaapa qabaGcpeGaeyyXICTaeqyWdi3damaaBaaaleaapeGaam4Caiaadsha caWGHbGaam4zaiaad6gacaWGHbGaamiDaiaadMgacaWGVbGaamOBaa WdaeqaaaGcbaWdbiaadoeapaWaaSbaaSqaa8qacaaIXaaapaqabaGc peGaey4kaSYaaSaaa8aabaWdbiabeg8aY9aadaWgaaWcbaWdbiaado hacaWG0bGaamyyaiaadEgacaWGUbGaamyyaiaadshacaWGPbGaam4B aiaad6gaa8aabeaak8qacaWG2bWaaSbaaSqaaiaadMgacaWGUbaabe aakmaaCaaaleqabaGaaGOmaaaaaOWdaeaapeGaaGOmaaaadaqadaWd aeaapeGaaGymaiabgUcaRiaadoeapaWaaSbaaSqaa8qacaWGKbaapa qabaaak8qacaGLOaGaayzkaaaaaaaa@6498@
    ここで、 C d MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadoeapaWaaSbaaSqaa8qacaWGKbaapaqabaaaaa@388A@ はオプションの降下パラメータ。(3)
    P i n = P s t a g n a t i o n ρ s t a g n a t i o n v i n 2 2 ( 1 + C d ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadcfapaWaaSbaaSqaa8qacaWGPbGaamOBaaWdaeqaaOWdbiab g2da9iaadcfapaWaaSbaaSqaa8qacaWGZbGaamiDaiaadggacaWGNb GaamOBaiaadggacaWG0bGaamyAaiaad+gacaWGUbaapaqabaGcpeGa eyOeI0YaaSaaa8aabaWdbiabeg8aY9aadaWgaaWcbaWdbiaadohaca WG0bGaamyyaiaadEgacaWGUbGaamyyaiaadshacaWGPbGaam4Baiaa d6gaa8aabeaak8qacaWG2bWaaSbaaSqaaiaadMgacaWGUbaabeaakm aaCaaaleqabaGaaGOmaaaaaOWdaeaapeGaaGOmaaaadaqadaWdaeaa peGaaGymaiabgUcaRiaadoeapaWaaSbaaSqaa8qacaWGKbaapaqaba aak8qacaGLOaGaayzkaaaaaa@5C66@
    (4)
    ( ρe ) in =( 1 ρ in ρ stagnation ) P in + E stagnation MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbmaabmaapaqaa8qacqaHbpGCcaWGLbaacaGLOaGaayzkaaWdamaa BaaaleaapeGaamyAaiaad6gaa8aabeaak8qacqGH9aqpdaqadaWdae aapeGaaGymaiabgkHiTmaalaaapaqaa8qacqaHbpGCpaWaaSbaaSqa a8qacaWGPbGaamOBaaWdaeqaaaGcbaWdbiabeg8aY9aadaWgaaWcba WdbiaadohacaWG0bGaamyyaiaadEgacaWGUbGaamyyaiaadshacaWG PbGaam4Baiaad6gaa8aabeaaaaaak8qacaGLOaGaayzkaaGaamiua8 aadaWgaaWcbaWdbiaadMgacaWGUbaapaqabaGcpeGaey4kaSIaamyr a8aadaWgaaWcbaWdbiaadohacaWG0bGaamyyaiaadEgacaWGUbGaam yyaiaadshacaWGPbGaam4Baiaad6gaa8aabeaaaaa@5FF8@
    その後で、平均値を計算することにより、グローバル材料状態が決定されます。
    圧力
    Δ P i n = i α m a t i ( t ) Δ P i n m a t _ i
    密度
    ρ i n = i α m a t i ( t ) ρ i n m a t _ i
    エネルギー
    ( ρ e ) i n = i α m a t i ( t ) E i n m a t _ i
  2. オプションの比率関数は、体積、密度またはエネルギー比率をスケーリングするために使用できます。
  3. パラメータPEXTでは、相対圧力 Δ P min m a t _ i を操作する場合に周囲圧力を考慮できます。このパラメータは、Radiossで各サイクルの正確なエネルギー統合に必要です。そうしないと、数値EOSの解が一般的に不正確になります。このパラメータは、全(物理)圧力を求めるためにEOS計算に含めなければならない圧力を表します。アニメーションファイル内の圧力コンターへの影響はありません。

    線形EOSを使用した例:

    全圧力: P = P a m b + C 1 μ MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadcfacqGH9aqpcaWGqbWdamaaBaaaleaapeGaamyyaiaad2ga caWGIbaapaqabaGcpeGaey4kaSIaam4qa8aadaWgaaWcbaWdbiaaig daa8aabeaak8qacqaH8oqBaaa@40F1@ かつPEXT = 0

    相対圧力: Δ P = C 1 μ かつ P E X T = P a m b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGfbGaamiwaiaadsfaaeqaaOGaeyypa0JaamiuamaaBaaa leaacaWGHbGaamyBaiaadkgaaeqaaaaa@3E48@

  4. 体積比率によって、要素体積を3つの異なる材料で分け合うことができます。

    材料ごとに、 α 0 mat _ i を0と1の間に定義する必要があります。

    初期体積比率の合計 i = 1 3 α 0 mat _ i は1に等しい必要があります。

    体積の自動初期比率については、/INIVOLをご参照ください。

  5. 線形EOSは:(5)
    P ( μ , E ) = C 0 + C 1 μ
    これは、圧力とエネルギーを合計にするか相対にするかにより、柔軟性を提供します:(6)
    P ( μ , E ) = C 0 + C 1 μ

    ここで、 C 0 = P amp , C 1 = ρ 0 c 0 2 P E X T = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGfbGaamiwaiaadsfaaeqaaOGaeyypa0JaaGimaaaa@3B42@

    これにより、 P ( μ , E ) = C 0 + C 1 μ から一般形式が得られます。(7)
    Δ P ( μ , E ) = C 1 μ

    ここで、 C 1 = ρ 0 c 0 2 P E X T = P a m b MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGfbGaamiwaiaadsfaaeqaaOGaeyypa0JaamiuamaaBaaa leaacaWGHbGaamyBaiaadkgaaeqaaaaa@3E48@ .

  6. Δ P min mat _ i フラグは、計算される圧力の最小値です。

    P = Δ P + P E X T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadcfacqGH9aqpcaqGuoGaamiuaiabgUcaRiaadcfapaWaaSba aSqaa8qacaWGfbGaamiwaiaadsfaa8aabeaaaaa@3EDA@ のため、 P E X T = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGfbGaamiwaiaadsfaaeqaaOGaeyypa0JaaGimaaaa@3B42@ の定義は Δ P = P MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiLdiaadc facqGH9aqpcaWGqbaaaa@39C1@ および Δ P min = P min MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiLdiaadc fadaWgaaWcbaGaciyBaiaacMgacaGGUbaabeaakiabg2da9iaadcfa daWgaaWcbaGaciyBaiaacMgacaGGUbaabeaaaaa@3FC7@ を意味します。

    流体材料圧力を正のままにして、引張り強度を避ける必要があります。これにより、 P m i n = 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa WdbiaadcfapaWaaSbaaSqaa8qacaWGTbGaamyAaiaad6gaa8aabeaa k8qacqGH9aqpcaaIWaaaaa@3C5B@ から Δ P m i n = P E X T MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaaqaaaaaaaaa Wdbiaabs5acaWGqbWdamaaBaaaleaapeGaamyBaiaadMgacaWGUbaa paqabaGcpeGaeyypa0JaeyOeI0Iaamiua8aadaWgaaWcbaWdbiaadw eacaWGybGaamivaaWdaeqaaaaa@4157@ が得られます。

    ソリッド材料については、 Δ P min mat _ i = 1030 のデフォルト値が適切です。

  7. 停滞エネルギーは省略可能です。これは、このEOSがエネルギーに依存しないためです。エネルギー入力値は、アニメーションファイルと時刻歴内の出力値にのみ影響します。
  8. EOSパラメータは、隣接するMM-ALE領域からの流体EOSと一致する必要があります。