

User Manual Version 4.2.11

Copyright Notice

Copyright © 2020 by Fraunhofer ITWM. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the written permission of Fraunhofer ITWM, Fraunhofer-Platz 1, D-67663 Kaiserslautern, Germany.

Registered Trademarks

Adams[®] is a registered trademark of the MSC.Software[®] Corporation. *OpenCRG*[®] is a registered trademark of Daimler AG, Germany.

Preliminary Notice

Fraunhofer ITWM aims to deliver software of high quality which conforms to the specifications agreed with licensees, but cannot guarantee that all features will perform exactly as described. Those who use the program do so on the understanding that the results from analysis software are dependent on the inputs. In any case, the program should be used in accordance with the instructions contained in the documentation and other information provided with the program supplied by Fraunhofer ITWM. Fraunhofer ITWM does not warrant that any specific feature will produce specific results, and does not accept liability for any losses, direct, consequential or otherwise, resulting from the use of the program.

Authoring notes

Axel Gallrein, Fraunhofer ITWM, author and editor

Table of Contents

CDTIRE	I
User Manual	I
Version 4.2.11	I
TABLE OF CONTENTS	
INTRODUCTION	5
Tire Model Background	5
CDTire Model Family	5
Road Surface Models	9
CDTire road surfaces models (RSMs)	9
MBS road surfaces models (RSMs)	9
MODEL IMPLEMENTATION	10
Modeling with CDTire	10
MODEL USAGE	11
Road Surface Model 1000	11
Header (Road Surface Model 1000)	
Data Part (Road Surface Model 1000)	
Road Surface Model 1002	16
Header (Road Surface Model 1002)	
Header (Road Surface Model 1002)	
Road Surface Model 1008	20
Road Surface Model 2000	22
CDTire Setup for Road Surface Model 2000	22
Customizing CDTire	29
APPENDIX	30
Tire Parameters	
Tire Parameter File - CDTire/MF++	30
Tire Parameter File - CDTire/Realtime	35
Tire Parameter File for CDTire/3D	
Road Parameters	52
Example for Equidistant Track Data (Data Type 2)	52
Example for Non-Equidistant Track Data (Data Type 3)	53
Warnings and Errors	55

Introduction

The *Comfort and Durability Tire* is a tire model family to be used with the MBS software systems. It focuses on comfort and durability applications but also allows for handling analysis.

Remark: In the further text *Comfort and Durability Tire* will be referenced as *CDTire*.

Tire Model Background

CDTire is a tire model for passenger car and light truck tires that allows engineers to do full vehicle ride comfort and durability analysis in respective MBS software systems, taking into account tire belt dynamics and interaction with 3D road surfaces.

During the multi-body simulation CDTire computes the spindle forces and moments acting on each wheel in the model as well as the local contact forces while driving on a 3D road surface. CDTire accurately captures the vibrations in the frequency range for durability and comfort studies up to 150 Hz.

CDTire Model Family

CDTire offers 3 basic tire models

- o CDTire/3D
- CDTire/Realtime
- CDTire/MF++

The following models are considered CDTire/Legacy and are not actively developed anymore:

CDTire 20, CDTire 30, CDTire 40, 2030, 2040

However, existing model 30 parameter files can be used as they are automatically converted to CDTire/Realtime and model 40 files can be used as they are automatically converted to CDTire/3D.

The following paragraphs give some general background information to the sub-models. See the *Appendix* for a detailed description of the corresponding parameter files and their function.

CDTire/3D

Fig. 1: CDTire/3D

Tire Model Structure:

- belt is flexible shell (default: 6x3x50 dof's)
- both sidewalls are flexible shells (default: 8x3x50 dof's)

Contact Formulation:

- brush type contact
- local static stick-slip ability

Performance:

- substantial effort
- *lambda road* can be arbitrary
- full obstacle enveloping

CDTire/Realtime

Fig. 2: CDTire/Realtime

Tire Model Structure:

- belt is flexible ring (default: 3x50 dof's)
- sidewall is local viscoelastic foundation

Contact Formulation:

- brush type contact
- local static stick-slip ability

Performance:

- hard real time capable
- road surface wavelength $lambda_{road}$ can be arbitrary in tire in-plane direction
- restriction: only in-plane obstacle enveloping, as lateral extension of in-plane tireroad intersection is considered constant for each tire

CDTire/MF++

Fig. 3: CDTire/MF++

Tire Model Structure:

- MF 5.2 / PAC2002
- Coupled with CDTire/Thermal

Contact Formulation:

- Estimation of contact patch shape, location and stick/slip zones
- Temperature dependent friction and grip levels

Performance:

• hard real time capable

Road Surface Models

Technically, the Road Surface Model is a software library through which *CDTire* can interrogate road surfaces in order to sense contact. Three mechanisms for road surface definitions are supported with the Road Surface Model:

- CDTire internal road surface models (RSM 1000, 1002, 1008, 2000, 3000)
- User defined road surface model (RSM 1100)
- MBS dependent road surface models may be available, see the corresponding *CDTireMBSManual* for more information.

CDTire road surfaces models (RSMs)

See the chapter *Model Usage* for detailed information on the single models.

CDTire now also supports the OpenCRG[®] road format as Road Surface Model 3000. This part of the software and the respective data is licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. More Information on OpenCRG[®] open file formats and tools can be found at http://www.opencrg.org

MBS road surfaces models (RSMs)

Some MBS systems allow CDTire to utilize their own road surface models. See the respective *CDTire MBS Guide* for detailed information on the these models and how to use them.

Model Implementation

The implementation is done by using a dedicated element to include *CDTire* in your vehicle or testrig model.

Modeling with CDTire

The *CDTire* element is a dedicated element in the modeling process and supports various commercially available MBS software packages :

- Altair MotionSolve
- IPG CarMaker
- LMS Samtech Samcef Mecano
- Siemens Simcenter 3D Motion
- MATLAB / Simulink
- Mechanical Simulation CarSim
- MSC ADAMS
- Dassault Systemes SIMPACK
- VI-grade VI-CarRealTime

Please see the *CDTire MBS Guide* documentation of the specific guides on how to model with CDTire.

Model Usage

To include the CDTire in a MBS model also road data is required. This data can, in the simplest form, describe a plain surface without any obstacles or tracks. More complex data give an analytical description of a road surface with obstacles or tracks, digitized measured data, a combination of those or of a drum surface.

Road Surface Model	Surface Type
1000	parametric road surface description
1002	rolling drum with or without a cleat
1008	3D surface
1100	User road model (ADAMS only)
2000	parametric and digitized road data
3000	OpenCRG [®] (1.1.1) road data

CDTire supports several road surface models:

Road Surface Model 1000

The Road Surface Model 1000 is adapted for an analytical description of the road surface. A number of different obstacle types and tracks are available to model the road. It will generate a surface Z(X,Y) with respect to the coordinate system representing the surface origin as defined in the MBS model (P5).

A road definition file for the Road Surface Model 1000 is structured as follows:

- **Header**: This part specifies the additional translation and the used data type (obstacles, equidistant tracks or non-equidistant tracks).
- Data Part: For each obstacle or track the corresponding data is defined

Header (Road Surface Model 1000)

```
# HEADER ROAD MODEL 1000
# X0_ROAD Y0_ROAD Z0_ROAD MU_ROAD
200.0 200.0 100.0 0.9
# DATA TYPE: (2, 3 OR 4)
2
```

The first line is a comment line starting with a hash (#). You may use it for specifying a short description or general comment to the road definition file. This line is required but all contents will be ignored by *CDTire*.

The second and the fourth lines are comment lines starting with a hash (#), too. Here you should enter "placeholders" for the data in the following lines. *CDTire* ignores these lines but the file will be easier to read for all users.

The third line contains the data defining the additional translation. The data type is defined by the entry in the fifth line.

Additional Translation

You may define a translation of the road coordinate system (X0) from the road origin marker (P5) of the MBS model.

Fig. 4: additional translation

The additional translation is defined in the third line:

Line	1:	#	HEADER	ROAD I	MODEL	1000			
<mark>Line</mark>	2:	#	X0_ROAL) YO	_ROAD	Z0_	ROAD	MU_	ROAD
Line	3:		200.0	20	0.0	100).0	0.9)

with

X0_ROAD	Translation in x-direction
Y0_ROAD	Translation in y-direction
Z0_ROAD	Translation in z-direction
MU ROAD	friction coefficient road

The parameters **X0_ROAD**, **Y0_ROAD** and **Z0_ROAD** determine the position of the subsequent definitions with respect to the coordinate system representing the surface origin as defined in the MBS model.

The friction coefficient of the road defines the friction of the defined plane except for all explicitly defined parts like tracks or obstacles, as these must specify their own friction coefficient.

Data Type

The data type defines the surface structure in general. It is given in the 5th line of the road definition file:

```
Line 1: # HEADER ROAD MODEL 1000
Line 2: # X0_ROAD
                       Y0_ROAD
                                   ZO ROAD
                                              MU ROAD
                                   100.0
                                               0.9
Line 3:
           200.0
                       200.0
Line 4: # DATA TYPE: (2, 3 OR 4)
Line 5: 2
with
    DATA TYPE
                    2 = equidistant track data
                    3 = non-equidistant track data
                    4 = matrix track data
```

The previously available **Data Type 1** road surface description is not supported anymore and will generate an error message.

Data Part (Road Surface Model 1000)

Depending on the data type defined in the header the data part contains one or more definitions of either obstacles or equidistant tracks or non-equidistant tracks. Mixing the data types is not possible.

Equidistant Track Data (DATA TYPE 2)

This is the preferred data type to construct track surfaces Z(X) on equidistant data (DATA TYPE = 2).

Fig. 5: Road Surface Model 1000: equidistant track data

The direction of the track will be the x-direction of the coordinate system representing the surface origin as defined in the MBS model. Interpolation of the track data will be linear.

There can be several tracks defined in one file. Therefore the header of a road definition file for equidistant track data contains two additional lines:

```
Line 6: # NTRACKS
Line 7:
           3
with
```

```
NTRACKS
```

#

total number of tracks

For each of the NTRACKS tracks a body definition follows. If these tracks overlap, CDTire will generate a runtime error once it tries to evaluate a multiply defined surface point. The body of a track consists of 2 + NDATA lines:

#	NDATA	X0_TRACK	YO_TRACK	HALF_WIDTH	DX	MU_TRACK			
	4	0.0	0.0	300.0	10.0	1.0			
	0.0								
	10.0								
	10.0								
	0.0								
w	ith								
	NDAT	A	number of da	ata points of the tra	ck				
	XO_TR	ACK	track origin x	track origin x-coordinate with respect to the road data origin					
	Y0_TR	АСК	track origin y origin	track origin y-coordinate with respect to the road data origin					
	HALF_	WIDTH	half width of	the track					
	DX		equidistant s	pacing $\Delta \mathrm{x}$ of the tr	ack data				
	MU_T	RACK	friction coeff	icient of the track s	urface				
	Line 10 Line 9	0 + NDATA	these lines co hight)	ontain the z data of	the single	tracks (local			

The total width of the track is 2*HALF_WIDTH, i.e. HALF_WIDTH is applied in the positive and the negative Y-direction, starting at **Y0_TRACK**.

Line 3 starts with the first data value. This value does not need to be zero, allowing for discontinuous surfaces. All further data must be on consecutive lines, one value each, as specified by NDATA.

See the chapter Example for Equidistant Track Data (Data Type 2) in the Appendix for a detailed example.

Non-equidistant Track Data (DATA TYPE 3)

This data type (**DATA TYPE** = 3) is used to construct track surfaces with non-equidistant data (based on pairs of (X,Z) data). For certain types of street profiles the use of this data type would be much more efficient than equidistant data (e.g. a ramp). The direction of the track is the same as for the equidistant data. Again, several tracks can be defined in one file.

As for equidistant track data, the header is extended by the lines

Line 6: # NTRACKS Line 7: 3

with

NTRACKS total number of tracks

For each of the NTRACKS tracks a body definition follows. If these tracks overlap, *CDTire* will generate a runtime error once it tries to evaluate a multiply defined surface point. The body of a track consists of 2 + NDATA lines:

#	NDATA	X0_TRACK	YO_TRACK	HALF_WIDTH	MU_TRACK			
	3	0.0	0.0	300.0	1.0			
	0	0						
	30000	1000						
	50000	0						
wi	th							
	NDATA	L .	number of da	ta points of the trac	ck			
	X0_TR/	ACK	track origin x-coordinate with respect to the road data origin					
	Y0_TR/	АСК	track origin y-coordinate with respect to the road data origin					
	HALF_\	NIDTH	half width of t	the track				
	MU_TF	RACK	friction coeffi	cient of the track su	ırface			
	Line 10 Line 9 +	 NDATA	these lines co	ntain the x and z da	ta of the single tracks			

See the chapter *Example for Non-Equidistant Track Data (Data Type 3)* in the Appendix for a detailed example.

Matrix Track Data (DATA TYPE 4)

This data type (**DATA TYPE** = 4) is used to construct track surfaces with matrix data. The direction of the track is the same as for the equidistant data. Again, several tracks can be defined in one file.

Line 6: # NTRACKS Line 7: 3 with

NTRACKS

total number of tracks

For each of the NTRACKS tracks a body definition follows. If these tracks overlap, *CDTire* will generate a runtime error once it tries to evaluate a multiply defined surface point. The body of a track consists of 2 + NDATA lines:

#	NX	NY	X 0	Y	0	DX	DY	MU	ZSCALE	Z 0
	3	5	-10	.0 -1	0.0	10.0	5.0	0.9	1.0	0.0
	6.0	6.0	6.0	6.0	6.0					
	6.0	3.0	0.0	3.0	6.0					
	6.0	6.0	6.0	6.0	6.0					
w	ith									
	NX			ทเ	umber	of matrix	rows of	the track n	natrix	
	NY			ทเ	umber	of matrix	columns	of the tra	ck matrix	
	X0			tra	ack ori	gin x-coo	rdinate w	vith respec	t to the road da	ata origin
				(u	pper le	eft point)				
	YO			tra or	ack ori igin (u	gin y-coo pper left	rdinate w point)	vith respec	t to the road da	ata
	DX			(s	igned)	spacing x	directio	n (betweer	n rows)	
	DY			(si	igned)	spacing y	directio	n (betweer	n columns)	
	ми	I		fri	ction c	oefficien	t of the t	rack matri	x	
	ZSC	ALE		Sc	aling o	f matrix v	/alues (z	values)		
	Z0			Ad	ditive	offset of	matrix v	alues (z val	lues)	

Road Surface Model 1002

The Road Surface Model 1002 adapts an analytical description of a drum surface. A number of different obstacle types and tracks are available to model the drum. It will generate a surface dR(phi,Y) with respect to the coordinate system representing the surface origin as defined in the MBS model (P5).

A road definition file for the Road Surface Model 1002 is structured as follows:

- **Header**: This part specifies the additional translation and the used data type (obstacles, equidistant tracks or non-equidistant tracks).
- Data Part: For each obstacle or track the corresponding data is defined

Header (Road Surface Model 1002)

```
# DESCRIPTION LINE
# RADIUS_DRUM MU_DRUM PERIODIC
1000.0 1.0 1
# SURFACE TYPE
1
```

The first line is a comment line starting with a hash (#). You may use it for specifying a short description or general comment to the drum definition file. This line is required but all contents will be ignored by *CDTire*.

The second and fourth lines are comment lines starting with a hash (#), too. Here you should enter "placeholders" for the data in the following lines. *CDTire* ignores these lines but the file will be easier to read for all users.

The third line contains the data defining the drum surface without any obstacles or data. It consists of the radius of the drum (in [mm]) and the friction coefficient (in [1]). A third parameter is the periodic flag, and if set obstacles appear with every revolution of the drum surface. If not set, the obstacle will appear only once (depending on S_0 settings). The fifth line contains the type of obstacle data.

Line	e 1	:	#	DESCRIP	TION	LINE					
<mark>Line</mark>	2	:	#	RADIUS_	DRUM	MU_	DRUM	PERIODIC			
Line	9 3	:		1000.0		1.()	1			
Line	. 4	:	#	SURFACE	TYPE						
Line	: 5	:		2							
with											
RADIUS_DRUM					drum ra	drum radius in [mm]					
	MU_DRUM					friction	friction coefficient drum surface outside obstacle data				
	PE	rio	DIC	:		repeat	cleat (1) or	only once (0)			
	SU	RF/	ACE	ТҮРЕ							
						2 = with	n rectangula	ar cleat			
						3 = with	n chamfere	d cleat			
						4 = mat	rix data				

Fig. 6: Road Surface Model 1002: rolling drum

Header (Road Surface Model 1002)

With R4.2.7, there are 3 surface types to construct drum surfaces with.

Rectangular cleat (SURFACE TYPE 2)

The road definition file for a drum surface with any rectangular cleat (SURFACE TYPE 2) has the following structure:

#	DESCRI	IPTION	LINE					
#	RADIUS	S_DRUM	MU_DR	UM PE	SRIODIC			
	1000.0)	1.0	1				
#	SURFAC	CE TYPE						
	2							
#	H	W	s_0	PHI	MU_CLEAT			
	10.0	20.0	-2522.2	90.0	0.8			
wi	th							
	н			height [mm] of cleat				
	W			width [mm	 of cleat (length of cleat is infinite) 			
	S_0		arc ODI -RA		arc length[mm] from top of drum to cleat origin - for PER ODIC_FLAG = 1, this must be -RADIUS_DRUM*PI < S_0 < RADIUS_DRUM*PI			
	PHI			direction a versal cleat	ngle of cleat, measured from wheel plant t is 90°	ne, trans-		

MU_CLEAT

friction coefficient on cleat

Ramped / trapezoid cleat (SURFACE TYPE 3)

The road definition file for a drum surface with any ramped or trapezoid cleat (SURFACE TYPE 3) has the following structure:

#	DESCR	IPTION 3	LINE							
#	RADIU	S_DRUM	MU_I	DRUM	PERIODIC					
	1000.	0	1.0		1					
#	SURFA	CE TYPE								
	<mark>3</mark>									
#	H	W1	W2	W 3	S_0	PHI	MU_CLEAT			
	10.0	20.0	40.0	20.0	-2522.2	90.0	0.8			
w	with									
	н				height [mm] of cleat					
	W1			width	width (arclength) [mm] of leading ramp					
	W2			width	width (arclength) [mm] of leading ramp					
	W3			width	width (arclength) [mm] of trailing ramp					
	S_0			arclen ODIC_ -RADI	arclength [mm] from top of drum to cleat orig ODIC_FLAG = 1, this must be -RADIUS_DRUM*PI < S_0 < RADIUS_DRUM*P					
	PHI			direct	ion angle of cleat	, measured f	rom wheel plane			
	MU_	CLEAT		frictio	n coefficient on c	leat				

Matrix data (SURFACE TYPE 4)

The road definition file for a drum surface with any equidistant grid or matrix data dR(phi,y) (SURFACE TYPE 4) has the following structure:

#	DESC	CRIPTI	ON LIN	E					
#	RADI	LUS_DR	UM	MU_DRUM	PERI	ODIC			
	1000	0.0		1.0	1				
#	SURE	TACE T	YPE						
	4								
#	NPHI	C NY	PHIO	DPHISEG	YO	DY	MU	SCALE	RADIUSOFFSET
	4	2	0.0	3.438	-200.0	400	0.8	1.0	0.0
1(0.0	10.0							
2(0.0	20.0							
2(0.0	20.0							
1(0.0	10.0							
wi	th								
	NF	РНІ		nu	mber of circ	umfere	ential da	ta points	

NY	number of lateral (axial) data points
PHI0	Starting angle [deg] of data segment, -180 < PHI0 < 180
DPHISEG	angular segment range [deg] of data, 360° for full drum
YO	starting lateral coordinate [mm] of data
DY	Lateral segment range [mm] of data, range is [Y0,Y0+DY]
MU	friction coefficient on data
SCALE	scaling coefficient for radial data
RADIUSOFFSET	Offset value [mm]
DATA	NPHI rows, NY columns

Above example makes up a trapeze.

All lines starting with a hash (#) are comment files used to define placeholders for the data in the following lines. Even if *CDTire* will skip over them, these lines are required. Do not delete them!

Road Surface Model 1008

This road surface model is the CDTire implementation of the 3D method of MSC Adams .rdf data files. Some MBS systems can also visualize this road format in their respective Pre-/Postprocessor. This documentation lists only the required data format to work with CDTire - for visualization support of MBS systems, please refer to the respective MBS documentation.

Data structure and format

The data file is based on section / keyword format. A valid section line contains the name of the section is square brackets. A valid keyword line contains the name of the keyword, followed by the '=' character, followed by the value. A valid CDTire RSM1008 file is shown here:

```
[MODEL]
METHOD = '3D'
[UNITS]
LENGTH = 'MM'
[OFFSET]
X = 100.0
Y = 200.0
Z = -10.0
```

NODES]			
NUMBER_	_OF_NODES =	= 4		
{ node	x_value	y_value	z_value	}
1	-10.0	-200.0	10.0	
2	10.0	-200.0	10.0	
3	10.0	200.0	10.0	
4	4 -10.0		10.0	
[ELEMEN NUMBER_	<mark>NTS]</mark> _OF_ELEMEN'	TS = 2		
{ node_	_1 node_2	node_3	u }	
1	2	3	0.8	
1	3	4	0.8	

The following format details may only be valid for the CDTire implementation of .rdf files:

- Section names, keyword names and strings are case insensitive. All of "METHOD", "method", "Method" are the same valid keyword.
- Supported units are "MM" (millimeter), "CM" (centimeter), and "M" (meter)
- In node and element section, a comment line containing a left brace (curly) bracket indicates that the next line starts with the respective data matrix (nodes or elements). The successive NUMBER_OF_xxx lines must contain valid line data for each line.

Road Surface Model 2000

CDTire Setup for Road Surface Model 2000

CDTire needs to be set up for road surface type "2000" in order to make use of the Road Surface Model.

In order to run CDTire on road data, following set of files is required in the

In order to run *CDTire* on road data, following set of files is required in the directory referred to in the CDTire setup:

- a global definition file that defines the boundaries of the track **MasterRectangle.h**
- a surface type classification file **SurfacType**. **h** that defines the friction coefficient for the different surface types as referred in the road data files
- a set of "macropatch" header files named **MP_0_0.h**, **MP_0_1.h** etc.
- (when applicable) a set of "macropatch" binary data files named MP_0_0.d, MP_0_1.d etc.
- (when applicable) a set of parametric road description files

Note : the mention "when applicable" relates to the fact that a track definition for CDTire may be defined either through digitized data only, parametric description files only, or a mix of both.

IMPORTANT : all the files mentioned above are **strictly required**, and need to adhere to the specified naming and format conventions. The format of the needed header files is explained in the following sections.

The fundamental idea behind the *Road Format* concept is that any track will be described in a rectangular grid ; which has three levels of discretization :

- a "master rectangle" that envelopes the complete track
- a series of "macropatches" (typically size 10 x 10 m) defined inside this master rectangle
- a series of "micropatches" per macropatch (typical size 0.5 x 0.5 m)
- a rectangular mesh in each micropatch (grid size typically 5 x 5 mm), where per grid point in the mesh the track Z-coordinate has been measured and stored

MasterRectangle.h

The structure of the file **MasterRectangle.h** is:

version indicator	actual value : v002 (string)
comment	string(s) of arbitrary length beginning with #
platform-flag	specifies platform where binary data have been written (integer) 1→Unix, 2→Windows NT, 3→SGI IRIX
Xoff Yoff Zoff	real altitude and offset of left lower corner of the Master Rectangle (double)
indicator	to read the Macro-patches column-wise (1 char: c)
rows <space> columns</space>	number of rows and columns of Macro-patches (long)
width <space> height</space>	width and height of a Macro patch (double)
units	string max 17 characters – reserved for future use

Example for MasterRectangle.h

```
v002
# Master rectangle definition for Track A
2
-100.000 -100.000 15.000
c
7 1
10000.000 10000.000
mm
```

MacroPatch header files

The structure of the macropatch files **MP_0_0.h**, **MP_0_1.h**, ...is:

File entry	Meaning
Macropatch column_nr row_n	
{	
version indicator	actual value : v002 (string)
comment	string(s) of arbitrary length beginning with #

File entry	Meaning
platform-flag	specifies platform where binary data have been written (integer) 1→Unix, 2→Windows NT, 3→SGI IRIX
Zoff	z-Position of left lower corner relative to origin of Master-rectangle (double)
columns <space> rows</space>	number of columns and rows of micro-patches (long)
width <space> height</space>	width and height in mm of a micro-patch (dou- ble)
indicator	to read the micro-patches column-wise (1 char: c)
}	
Micropatch 0 0	header of micro patch section 0 0
<header info=""></header>	header info of micro patch section 0 0
Micropatch 0 1	header of micro patch section 0 1
<header info=""></header>	header info of micro patch section 0 1
Micropatch 0 2	header of micro patch section 0 2
<header info=""></header>	header info of micro patch section 0 2

The format of the micro patch sections in the macro patch header files depends on the type of road description:

•	off-road	
	File entry	Meaning
	Micropatch micro_column_nr micro_row_n	micro patch header
	datatype	0 -> off road (integer)

digitized	I	
File entry	Meaning	
Micropatch micro_column_nr m	icro_row_n	micro patch header
datatype	1 -> digitized (in	teger)
trackclassification	refers to a classi classification file	fication number in surface e (integer)
width <space> height</space>	width and heigh (double)	t in mm of an element
lines_h <space> lines_v</space>	number of grid l cally (integer)	ines horizontally and verti-
byte number	byte number of tifier index in th ger)	the first micro-patch iden- e data file (unsigned inte-
indicator	to read the micr char: c)	o-patches column-wise (1
· · ·		
tiretype_proposed	20 30 40 (int	eger)
flag	reserved for fut	ure use (integer)

• parameterized

parameterizea		
File entry	Meaning	
Micropatch micro_column_nr m	icro_row_n	micro patch header
datatype	2 -> parameteriz	zed
	(integer)	
trackclassification	refers to a classi classification file	fication number in surface e (integer)
filename	Filename withoz ification (string)	t pathname for data spec-
tiretype_proposed	20 30 40 (int	eger)
flag	reserved for fut	ure use (integer)

Example for a MacroPatch header file

The following example contains the <mark>3 types of micropatches</mark>. This file shows only the first and second column.

```
Macropatch 0 0
{
v002
# Example
 2
 -10.0000
 20 20
 500.000 500.000
 С
}
Micropatch 0 0
1
1
5.000 5.000
101 101
0
С
20
2030
Micropatch 0 1
1
1
5.000 5.000
101 101
40812
С
20
2030
Micropatch 0 2
1
1
5.000 5.000
101 101
81624
С
20
2030
Micropatch 0 3
1
1
5.000 5.000
101 101
122436
С
```

```
1
5.000 5.000
101 101
652992
С
20
2030
Micropatch 1 8
1
1
5.000 5.000
101 101
693804
С
20
2030
Micropatch 1 9
0
Micropatch 1 10
0
Micropatch 1 11
0
Micropatch 1 12
0
Micropatch 1 13
0
Micropatch 1 14
0
Micropatch 1 15
0
Micropatch 1 16
0
Micropatch 1 17
0
Micropatch 1 18
0
Micropatch 1 19
0
```

Surface type classification file

This file contains an ascii table defining the friction coefficient that corresponds to the surface types as specified in each micro patch header file.

Example for a surface type classification file

17	\rightarrow	Maximum	class	number	defined ir	n the file
0 <tab>1.00</tab>	\rightarrow	Surface	class	<tab></tab>	friction	coefficient
5 <tab>1.01</tab>	\rightarrow	Surface	class	<tab></tab>	friction	coefficient
12 <tab>1.05</tab>	\rightarrow					
13 <tab>1.1</tab>	\rightarrow					
17 <tab>1.15</tab>	\rightarrow					

Customizing CDTire

Even though *CDTire* tries to present a setup in a plug-and-play fashion, there are several considerations for a successful simulation that cannot be tuned automatically. These include structural discretization, integrator tuning and inflation pressure.

For more information on

- Structural discretization and inflation pressure refer to the chapters in the Appendix:
 - Tire Parameter Files for CDTire/MF++
 - o Tire Parameter Files for CDTire/Realtime and
 - Tire Parameter Files for CDTire/3D

Appendix

Tire Parameters

The following paragraphs explain the parameter files for the tire models *CDTire/MF++*, *CDTire/Realtime* and *CDTire/3D* in detail. For each tire model a listing of the corresponding parameter file and explanations to the single parameters are given.

Tire Parameter File - CDTire/MF++

The following listing shows the input file for a tire as used in the tire model *CDTire/MF++*:

```
[UNITS]
LENGTH = 'meter'
FORCE = 'newton'
ANGLE = 'radians'
MASS = 'kg'
TIME = 'second'
[MODEL]
LONGVL = 16.6
                              $Measurement speed
THERMAL MODEL FLAG = 0
                             $Lower cut off velocity
VELOCITY_TRESHOLD = 0.5
[DIMENSION]
UNLOADED RADIUS = 0.312
                              $Free tyre radius
WIDTH = 0.195
                              $Nominal section width of tyre
ASPECT_RATIO = 0.65
                              $Nominal aspect ratio
RIM_RADIUS = 0.19
                              $Nominal rim radius
RIM_WIDTH = 0.1524
                              $Rim width
[VERTICAL]
VERTICAL_STIFFNESS = 2e+005 $Tyre vertical stiffness
VERTICAL DAMPING = 0
                              $Tyre vertical damping
BREFF = 6.1
                              $Low load stiffness e.r.r.
DREFF = 0.45
                              $Peak value of e.r.r.
FREFF = 0.01
                              $High load stiffness e.r.r.
FNOMIN = 4000
                              $Nominal wheel load
[PARAMETER]
```

VERTICAL_STIFF	NESS = 2	e+005	\$Tyre vertical stiffness
[LONG_SLIP_RAN	GE]		
KPUMIN = -1.5			\$Minimum valid wheel slip
KPUMAX = 1.5			\$Maximum valid wheel slip
[SLIP_ANGLE_RA	NGE]		
ALPMIN = -1.57	08		\$Minimum valid slip angle
ALPMAX = 1.570	8		\$Maximum valid slip angle
[INCLINATION_A	NGLE_RAN	IGE]	
CAMMIN = -0.26	181		\$Minimum valid camber angle
CAMMAX = 0.261	81		\$Maximum valid camber angle
[VERTICAL FORC	E RANGE]		
$F_{2}MTN = 200$			\$Minimum allowed wheel load
FZMAX = 9000			SMaximum allowed wheel load
[SCALING_COEFF	ICIENTS]		
LFZO = 1	\$Scale	factor	of nominal (rated) load
LCX = 1	\$Scale	factor	of Fx shape factor
LMUX = 1	\$Scale	factor	of Fx peak friction coefficient
LEX = 1	\$Scale	factor	of Fx curvature factor
LKX = 1	\$Scale	factor	of Fx slip stiffness
LHX = 1	\$Scale	factor	of Fx horizontal shift
LVX = 1	\$Scale	factor	of Fx vertical shift
LGAX = 1	\$Scale	factor	of camber for Fx
LCY = 1	\$Scale	factor	of Fy shape factor
LMUY = 1	\$Scale	factor	of Fy peak friction coefficient
LEY = 1	\$Scale	factor	of Fy curvature factor
LKY = 1	\$Scale	factor	of Fy cornering stiffness
LHY = 1	\$Scale	factor	of Fy horizontal shift
LVY = 1	\$Scale	factor	of Fy vertical shift
LGAY = 1	\$Scale	factor	of camber for Fy
LTR = 1	\$Scale	factor	of Peak of pneumatic trail
LRES = 1	\$Scale	factor	for offset of residual torque
LGAZ = 1	\$Scale	factor	of camber for Mz
LXAL = 1	\$Scale	factor	of alpha influence on Fx
LYKA = 1	\$Scale	factor	of alpha influence on Fx
LVYKA = 1	\$Scale	factor	of kappa induced Fy
LS = 1	\$Scale	factor	of Moment arm of Fx
LSGKP = 1	\$Scale	factor	of Relaxation length of Fx
LSGAL = 1	\$Scale	factor	of Relaxation length of Fy
LGYR = 1	\$Scale	factor	of gyroscopic torque
LMX = 1	\$Scale	factor	of overturning couple
LVMX = 1	\$Scale	factor	of Mx vertical shift
LMY = 1	\$Scale	factor	of rolling resistance torque

```
[LONGITUDINAL_COEFFICIENTS]
```

PCX1	=	1.839 \$Shape factor Cfx for longitudinal force
PDX1	=	1.1387 \$Longitudinal friction Mux at Fznom
PDX2	=	-0.11999 \$Variation of friction Mux with load
PDX3	=	-2.2142e-005 \$Variation of friction Mux with camber
PEX1	=	0.62727 \$Longitudinal curvature Efx at Fznom
PEX2	=	-0.12336 \$Variation of curvature Efx with load
PEX3	=	-0.03448 \$Variation of curvature Efx with load squared
PEX4	=	-1.5066e-005 \$Factor in curvature Efx while driving
PKX1	=	18.886 \$Longitudinal slip stiffness Kfx/Fz at Fznom
PKX2	=	-3.988 \$Variation of slip stiffness Kfx/Fz with load
PKX3	=	0.21542 \$Exponent in slip stiffness Kfx/Fz with load
PHX1	=	-0.00033912 \$Horizontal shift Shx at Fznom
PHX2	=	-8.5877e-006 \$Variation of shift Shx with load
PVX1	=	-4.638e-006 \$Vertical shift Svx/Fz at Fznom
PVX2	=	1.9874e-005 \$Variation of shift Svx/Fz with load
RBX1	=	5.9945 \$Slope factor for combined slip Fx reduction
RBX2	=	-8.2609 \$Variation of slope Fx reduction with kappa
RCX1	=	1.07816 \$Shape factor for combined slip Fx reduction
REX1	=	1.644 \$Curvature factor of combined Fx
rex2	=	-0.0064359 \$Curvature factor of combined Fx with load
RHX1	=	0.008847 \$Shift factor for combined slip Fx reduction
PTX1	=	1.85 \$Relaxation length SigKap0/Fz at Fznom
PTX2	=	0.000109 \$Variation of SigKap0/Fz with load
PTX3	=	0.101 \$Variation of SigKap0/Fz with exponent of load

[OVERTURNING_COEFFICIENTS]

QSX1 = 0	\$Lateral force induced overturning moment
QSX2 = 0	\$Camber induced overturning couple
QSX3 = 0	\$Fy induced overturning couple

[LATERAL_COEFFICIENTS]

PCY1	=	1.3223	\$Shape factor Cfy for lateral forces
PDY1	=	1.0141	\$Lateral friction Muy
PDY2	=	-0.12274	\$Variation of friction Muy with load
PDY3	=	-1.0426 \$	Variation of friction Muy with squared camber
PEY1	=	-0.63772	\$Lateral curvature Efy at Fznom
PEY2	=	-0.050782	\$Variation of curvature Efy with load
PEY3	=	-0.27333 \$	Zero order camber dependency of curvature Efy
PEY4	=	-8.3143	\$Variation of curvature Efy with camber
PKY1	=	-19.797	\$Maximum value of stiffness Kfy/Fznom
PKY2	=	1.7999	\$Load at which Kfy reaches maximum value
PKY3	=	0.0095418	\$Variation of Kfy/Fznom with camber
PHY1	=	0.0011453	\$Horizontal shift Shy at Fznom
PHY2	=	-6.6688e-0	05 \$Variation of shift Shy with load
РНҮЗ	=	0.044112	\$Variation of shift Shy with camber
PVY1	=	0.031305	\$Vertical shift in Svy/Fz at Fznom
PVY2	=	-0.0085749	\$Variation of shift Svy/Fz with load

```
PVY3 = -0.092912 $Variation of shift Svy/Fz with camber
PVY4 = -0.27907 $Variation of shift Svy/Fz with camber + load
RBY1 = 6.2238
                 $Slope factor for combined Fy reduction
RBY2 = 3.0734
                 $Variation of slope Fy reduction with alpha
RBY3 = 0.016076 $Shift term for alpha in slope Fy reduction
RCY1 = 1.0051
                $Shape factor for combined Fy reduction
REY1 = 0.019749 $Curvature factor of combined Fy
REY2 = -0.0020691 $Curvature factor of combined Fy with load
RHY1 = -0.0010319 $Shift factor for combined Fy reduction
RHY2 = 7.4123e-006 $Shift factor for combined Fy red. w. load
RVY1 = 0.02962 $Kappa induced side force Svyk/Muy*Fz at Fznom
RVY2 = -0.011053 $Variation of Svyk/Muy*Fz with load
RVY3 = -0.0009317 $Variation of Svyk/Muy*Fz with camber
RVY4 = 11.842
                 $Variation of Svyk/Muy*Fz with alpha
RVY5 = 1.9
                 $Variation of Svyk/Muy*Fz with kappa
RVY6 = 0
                 $Variation of Svyk/Muy*Fz with atan(kappa)
PTY1 = 1.9
                $Peak value of relaxation length SigAlp0/R0
                $Value of Fz/Fznom where SigAlp0 is extreme
PTY2 = 2.25
```

[ROLLING_COEFFICIENTS]

QSY1	= 0.01	\$Rolling	resistance	torque	coefficier	nt	
QSY2	= 0	\$Rolling	resistance	torque	depending	on	Fx
QSY3	= 0	\$Rolling	resistance	torque	depending	on	speed
QSY4	= 0	\$Rolling	resistance	torque	depending	on	speed

[ALIGNING_COEFFICIENTS]

QBZ1 =	7.5088	\$Trail slope factor for trail Bpt at Fznom
QBZ2 =	-1.9428	\$Variation of slope Bpt with load
QBZ3 =	0.61681	\$Variation of slope Bpt with load squared
QBZ4 =	0.12231	\$Variation of slope Bpt with camber
QBZ5 =	0.50016	\$Variation of slope Bpt with absolute camber
QBZ9 =	5.5144	\$Slope factor Br of residual torque Mzr
QBZ10 =	= 0	\$Slope factor Br of residual torque Mzr
QCZ1 =	1.2237	\$Shape factor Cpt for pneumatic trail
QDZ1 =	0.062582	\$Peak trail
QDZ2 =	0.00052585	\$Variation of peak Dpt" with load
QDZ3 =	-0.60661	\$Variation of peak Dpt" with camber
QDZ4 =	8.634	\$Variation of peak Dpt" with camber squared
QDZ6 =	-0.0048467	\$Peak residual torque
QDZ7 =	0.0034983	\$Variation of peak factor Dmr" with load
QDZ8 =	-0.11032	\$Variation of peak factor Dmr" with camber
QDZ9 =	0.021277	\$Variation of peak factor Dmr" w. camber+load
QEZ1 =	-5.3971	\$Trail curvature Ept at Fznom
QEZ2 =	1.1207	\$Variation of curvature Ept with load
QEZ3 =	0	\$Variation of curvature Ept with load squared
QEZ4 =	0.14942 \$	Variation of curvature Ept w. sign of Alpha-t
QEZ5 =	-1.1429 \$	Variation of Ept with camber and sign Alpha-t
QHZ1 =	-0.0006990	5 \$Trail horizontal shift Sht at Fznom

```
QHZ2 = 0.0055192 $Variation of shift Sht with load
QHZ3 = 0.065953 $Variation of shift Sht with camber
QHZ4 = 0.11393 $Variation of shift Sht with camber and load
SSZ1 = 0.022576 $Nominal value of s/R0: effect of Fx on Mz
SSZ2 = 0.024754 $Variation of distance s/R0 with Fy/Fznom
SSZ3 = 0.0014697 $Variation of distance s/R0 with camber
SSZ4 = 0.0014801 $Variation of distance s/R0 with load+camber
QTZ1 = 0.2 $Gyration torque constant
MBELT = 4.9 $Belt mass of the wheel
```

Tire Parameter File - CDTire/Realtime

The following listing shows the input file structure for the tire model *CDTire/Realtime*. For a comprehensive list of the respective parameters of each block, look into the appended table and the example parameter files from the installation.

The unit system is fixed to [N,mm,s,t] (Newton, millimeter second, ton). The parameters are keyword based and reside in respective sections. The 2 mandatory sections are:

- [CDT30-HPS MODEL PARAMETERS]

contains all geometric, discretization, material and other physical modelling parameters

- [CDT30-HPS SOLVER PARAMETERS]

contains all numerical parameters of the internal integrator

Remark: You may edit some parameters to suit your requirements. These parameters are colored **blue** in the listing above and an according remark is given in the following table. The parameters colored in orange are optional and (if used) change model behavior or introduce new functionality.

Name	Explanation	Default	Unit	
	[CDT30-HPS MODEL PARAMETERS]			
PIN	Actual inflation pressure (possibly overruled by MBD model	0.25	MPa	
PREF	Reference inflation pressure	0.25	MPa	
PIN_FLAG	Toggle pressure-dependency of sidewall	0	-	
NMP	Number of mass points in belt	100	-	
	you may want to edit this value: the distance between two mass points (2 pi RGRT/NMP) must be around half of the fundamental wavelength of the surface, e.g. for a 20x20mm obstacle, this is 20 mm.			

All parameters of both sections are explained in the following table.

Name	Explanation	Default	Unit
FTX	Natural frequency: Translation in x/z direction (mode $R_1^{}$)	75	Hz
FTY	Natural frequency: Translation in y direction (mode L_0)	38	Hz
FRY	Natural frequency: rotation around y axis (mode $ \mathrm{C}_{0}$)	60	Hz
DTX	Damping coefficient of mode $R_1^{}$	0.08	-
DTY	Damping coefficient of mode $L_0^{}$	0.08	-
DRY	Damping coefficient of mode $C_0^{}$	0.08	-
RAD_NL_MOD	Stiffness influence factor radial (Alternative name: KARED)	0.29	-
CRY_RED_ FLAG	Activates reduction of circumferential rota- tional sidewall stiffness for large deflections	1	-
CRY_RED_ DEF	Deflection at which reduction of circumfer- ential rotational sidewall stiffness starts	0	mm
CRY_RED_ RES	Residual stiffness factor of circumferential rotational sidewall stiffness at full deflection	1	-
CRX_RED_ FLAG	Activates reduction of lateral rotational side- wall stiffness for large deflections	1	-
CRX_RED_ DEF	Deflection at which reduction of lateral rota- tional sidewall stiffness starts	0	mm
CRX_RED_ RES	Residual stiffness factor of lateral rotational sidewall stiffness at full deflection	1	-
CIRC_STIFF	Tensile stiffness of belt in circumferential di- rection (Alternative name: EF)	3.0E+6	Ν
CIRC_STIFF_CO MPRESSION _FACTOR	Optional tensile stiffness factor under compres- sion condition of tensile belt stiffness CIRC_STIFF	0	1
CIRC_DAMP	Damping factor of belt tensile stiffness (Alternative name: D_TAN)	1.0E-5	1/s
RAD_PRE- STRAIN_RED_FA CTOR	Optional scaling of inflation pre-strain distri- bution in radial direction of sidewall model	1	-

Name	Explanation	Default	Unit
(_BENDING _STIFF	Bending stiffness of the belt (around lateral axis) (Alternative name: EIY)	1.0E+6	Nmm^2
Y_BENDING _DAMP	Damping factor of belt bending stiffness (Alternative name: D_ALPHA)	1.0E-5	1/s
TREAD_NSEN_X	Number of circumferential sensor points in belt segment (Optional: NSEN)	5	-
FREAD_HEIGHT	Height of tread (Alternative name: HL)	10	mm
TREAD_EG	Young's modulus of the tread rubber times tread width per circumferential unit length (Alternative name: EG)	120	N/mm^2
TREAD_GG	Simultaneous setting of TREAD_GG_X and TREAD_GG_Y (Alternative name: BL)	40.0	N/mm^2
TREAD_GG_X	Shear modulus of the tread rubber times tread width per circumferential unit length in circumferential direction	40.0	N/mm^2
TREAD_GG_Y	Shear modulus of the tread rubber times tread width per circumferential unit length in lateral direction	40.0	N/mm^2
TREAD_RAD_D	Damping factor of radial tread stiffness (Alternative name: D_RAD_TREAD)	5.0E-4	1/s
TREAD_KM	Shear stiffness reduction coefficient (Alternative name: KM)	0.9	1
TREAD_SCAN _HEIGHT	Height in mm above surface where contact sensors are active	150.0	mm
TREAD_MAX _COMPRESS	Maximum compression of tread before warning is issued (and capped)	0.95	-
KSRED	Stiffness influence factor lateral	-70	-
PNEUMATIC _TRAIL_SCALE	Optional scaling of the pneumatic trail	1.0	-
KSRED _ADVANCED	Optional lookup table for scaling of KSRED as function of preload via $[F_0,S_0,,F_N,S_N]$ with linear interpolation and constant extrapolation	[-100,1]	[N,-,]
PNEUMATIC _TRAIL_SCALE _ADVANCED	Optional lookup table for scaling of PNEU- MATIC_TRAIL_SCALE as function of preload via $[F_0,S_0,,F_N,S_N]$ with linear interpolation and constant extrapolation	[-100,1]	[N,-,]

Name	Explanation	Default	Unit
MU	Relative friction coefficient (e.g. [1.2, 1.2, 1.0], alternative name: MGLT)	table	-
V_MU	Sliding velocity (e.g. [0.0, 1000, 10000], alternative name: VGLT)	table	mm/s
MU_GLOBAL _SCALEFACTOR	Global scaling factor of friction	1	-
MU_PRELOAD _DEPENDENCY	Optional preload dependent scaling of friction M from [F_{REF} , S, M _{MIN} , M _{MAX}] via M = 1 – S * (F / F_{REF} - 1)	[3000,0.2, 0.7,1.3]	[N,-,-,-]
LDE_FLAG	Activates LDE (Large Deformation Element) calculation for tire ground out (bottoming)	0	-
LDE_CNL	Radial stiffness of non-linear part per cir- cumferential unit length	30	N/mm^2
LDE_CLIN	Radial stiffness of linear part per circumfer- ential unit length	150	N/mm^2
LDE_RNL	Radius from rim at which non-linear part be- comes active (must be > LDE_RLIN)	20	mm
LDE_RLIN	Radius from rim at which linear part be- comes active	10	mm
R_STAT	Unloaded effective radius	317	mm
R_STAT	Unloaded static radius	317	mm
CR1_STAT	Linear static vertical stiffness	250	N/mm
ADVANCED	Optional scaling of sidewall shear damping as function of rotational velocity via $[\omega_0,s_0,\omega_1,s_1]$, linear interpolation and constant extrapolation	[20,3,40,1]	[rad/s, -, rad/s, -]
CORRECT _WEIGHT_TO _NOMINAL _FLAG	Mimic nominal tire weight	0	-
	[CDT30-HPS SOLVER PARAMETERS]		
TOL	Error tolerance of internal integrator	1.0E-4	-
DTM	Maximum step size of internal integrator	2.0E-4	S
DTMIN	Minimum step size of internal integrator	1.0E-10	S
DT_START _EXPL	Initial step size of internal explicit integrator	2.0E-4	S

_

Name	Explanation	Default	Unit
ТҮРЕ	Explicit 1, Implicit 2	1	-
UPDATE_FOR _MASTERCOR- RECTOR	Toggle corrector or Newton iterations to be taken into account (0 off, 1 on)	0	-
PRE_STEP _TIME	Duration of inflation pre-step before beginning of simulation	0.05	S
PRE_STEP _DEFLTIME	Duration of deflection pre-step before beginning of simulation (adjusted automatically)	0.2	S
PRE_STEP _SAFETY _MARGIN	Height above ideal contact point for initial infla- tion phase	10	mm
PRE_STEP _LDE_MARGIN	Minimal clearance (from rim point) for legal ini- tial deflection	10	mm
FORCE _NOSUCCESS	Returned force value in case of no convergence	1.0e+10	Ν
ALPHA _EXPLICIT	Explicit Newmark alpha integrator value	0	-
BETA _EXPLICIT	Explicit Newmark beta integrator value	0.166667	-
GAMMA _EXPLICIT	Explicit Newmark gamma integrator value	0.5	-
ALPHA _IMPLICIT	Implicit Newmark alpha integrator value	0	-
BETA _IMPLICIT	Implicit Newmark beta integrator value	0.25	-
GAMMA _IMPLICIT	Implicit Newmark gamma integrator value	0.5	-
NMAX_IMPL _ITER	Maximum number of iteration for the im- plicit integrator	3	-
IMPL_STEP _CTRL_ENABLE	Toggle internal step size control of implicit integrator (0 off, 1 on)	1	-
IMPL_STEP _CTRL_EPS	Percentage of error tolerance TOL used to activate step size control	200	-
IMPL_STEP _CTRL _NSUBSTEPS	Subdivision of steps if step size reduction is activated for implicit integrator	3	-

Name	Explanation	Default	Unit
IMPL_JAC _EVAL_AT _ITER	Toggle update of jacobian calculation during iteration (0 off, 1 on) for implicit integrator	0	-

Tire Parameter File for CDTire/3D

The following listing shows the input file structure of the tire model *CDTire/3D*. For a comprehensive list of the respective parameters of each block, look into the appended table and the example parameter files from the installation.

The unit system is fixed to [N,mm,s,t] (Newton, millimeter second, ton). The parameters are keyword based and reside in respective sections. The 2 mandatory sections are:

- [CDT50-N MODEL PARAMETERS]

contains all geometric, discretization, material and other physical modelling parameters (except SW_MODE=40 parameters)

- [CDT50-N SOLVER PARAMETERS]

contains all numerical parameters of the internal integrator

and 4 optional section:

- [CAVITY MODEL PARAMETERS]

contains al CAVITY_MODEL_FLAG = 1 parameters for compressible Euler flow model

- [CDT40-N MODEL PARAMETERS]

contains all SW_MODE = 40 parameters for analytical sidewall model

- [TIRE_AND_RIM_RESIZING]

contains reference and target tire and rim specification for automatic resizing

- [CDT50-N ADVANCED OUTPUT PARAMETERS]

contains advanced output options for post processing via CDTireViewer

The parameters may contain one- or two-dimensional arrays. One has to be careful about the lengths of these arrays. There are 3 types of entities utilizing arrays:

- ring entities (table length is NR)
- segment entities (table length is NR-1)
- contact entities

Contact entities can have 2 sizes: Associated mass points (table length NR-2*(NRSENSTART-1) with linear interpolation for the sensors) or directly number of sensors (table length (NR-2*(NRSENSTART-1)-1)*TREAD_NSEN_Y). If NRSENSTART is not set, it defaults to NRSW+1.

Ring entities are all entities that are associated with mass, geometry or circumferential properties, e.g. MASS_W, CONTOUR_SHELL_Y or RUBBER_CIRC_EH_W. Segment entities are all entities associated with lateral or diagonal properties, e.g. RUBBER_LAT_EH_W or RUB-BER_DIAG_EH_W.

Additionally, many entities consist of a material property and an associated weight, e.g. X_BENDING_STIFF and X_BENDING_STIFF_W. The local property then is a multiplication of the material property with its associated weight. In that way, it is possible to easily modify one local property or all properties simultaneously.

Remark: You may edit some parameters to suit your requirements. These parameters are colored blue in the listing below and an according remark is given in the following table. The parameters colored in orange are optional and (if used) change model behavior or introduce new functionality.

Name	Explanation	Default	Unit
	[CDT50-N MODEL PARAMETERS]		
PIN	Actual inflation pressure (maybe overruled by interface mechanism)	0.25	MPa
NCS	Number of cross sections	50	-
NR	Number of rings	14	-
NRSW	Number of rings in either sidewall (including bead node)	4	-

Name	Explanation	Default	Unit
NRSENSTART	Index of ring from where contact calculation starts	NRSW+1	-
SW_MODE	Materialized sidewall (50) or analytical sidewall (40)	50	-
CONTOUR_SHELL_Y CONTOUR_SHELL_Z	Lateral cross section coordinate of refer- ence configuration, ring entity	Table	mm
	Radial cross section coordinate of reference configuration, ring entity	Table	mm
MASS_SIDEWALL	Mass of one sidewall (including bead)	0.003	t
MASS_BELT	Mass of belt	0.006	t
MASS_BEAD	Mass of one bead	0.001	t
MASS_W	Weighting factors of mass distribution (ta- ble of length NR), ring entity	table	-
MASS_ADD_TO_RIM	Used for MBD_MASS_ADD_TO_RIM and MBD_MASS_SUB_FROM_WHEEL calcula- tion; does not affect tire simulation	0.001	t
IXX_ADD_TO_RIM	Same for MBD_IXX_xxx calculation	100	t mm^2
IYY_ADD_TO_RIM	Same for MBD_IYY_xxx calculation	200	t mm^2
IZZ_ADD_TO_RIM	Same for MBD_IZZ_xxx calculation	100	t mm^2
RUBBER_CIRC_EH	Rubber stiffness in circumferential direction (think Young E * thickness H)	40	N/mm
RUBBER_LAT_EH	Rubber stiffness in lateral direction (think Young E * thickness H)	40	N/mm
RUBBER_DIAG_EH	Rubber stiffness in diagonal direction (think Young E * thickness H)	10	N/mm

Name	Explanation	Default	Unit
RUBBER_SHEAR_GH	Remaining rubber shear stiffness (think shear modulus G * thickness H)	10	N/mm
RUBBER_XXX_DAMP	Corresponding (CIRC, LAT,DIAG, SHEAR) damping factors	0.0003	1/s
RUBBER_XXX_EH_W	Corresponding (CIRC, LAT,DIAG, SHEAR) weighting factors, ring or segment entity	table	-
CARCASS_CORDLAYER _STIFF	Carcass stiffness in cord angle direction (think Young E * thickness H)	400	N/mm
CARCASS_CORDLAYER _DAMP	Carcass damping factor in cord angle direc- tion	5.0E-6	1/s
CARCASS_CORDLAYER _STIFF_W	Carcass stiffness weighting factors, segment entity	Table	-
CARCASS_CORDLAYER _L0_REDFACTOR	Carcass zero length factor relative to refer- ence configuration, segment entity	Table	-
BANDAGE_CORDLAYER _STIFF	Bandage stiffness in cord angle direction (think Young E * thickness H)	1500	N/mm
BANDAGE_CORDLAYER _DAMP	Bandage damping factor in cord angle direc- tion	5.0E-6	1/s
BANDAGE_CORDLAYER _STIFF_W	Bandage stiffness weight factors, ring entity	Table	-
BANDAGE_CORDLAYER _L0_REDFACTOR	Bandage zero length factor relative to refer- ence configuration, ring entity	Table	-
NUMB_CARCASS_ CROSSPLY_ CORDLAYERS	Number of carcass cross ply layers, optional	0	-
CARCASS_CROSSPLY_ CORDLAYERS_STIFF_ COMPRESSION_ FACTOR	Cordlayer stiffness factor under compres- sion condition, direct multiplication.	0.2	-
CARCASS_ CROSSPLY_ CORDLAYERS_ANGLE 1	Carcass cord angle from circumferential di- rection for cross ply layer. Must be given ex- plicitly for each layer1 toN	88	deg
CARCASS_ CROSSPLY_ CORDLAYERS_STIFF 1	Cordlayer stiffness in cord angle direction (think Young E * thickness H). Must be given explicitly for each layer1 toN	500	N/mm
CARCASS_ CROSSPLY_ CORDLAYERS_DAMP 1	Cordlayer damping factor in cord angle di- rection. Must be given explicitly for each layer1 toN	5.0E-6	1/s

Name	Explanation	Default	Unit
CARCASS_ CROSSPLY_ CORDLAYERS_STIFF_ W1	Local cordlayer stiffness factor in cord angle direction (think Young E * thickness H). Must be given explicitly for each layer1 toN	[1,,1]	-
CARCASS_CROSSPLY_ CORDLAYERS_L0_ REDFACTOR1	Local cordlayer zero length factor relative to reference configuration. Must be given explicitly for each layer1 toN	[1,,1]	-
NUMB_STEEL _CORDLAYERS	Number of steel cord layers	2	-
STEEL_CORDLAYER _ANGLE	Angle of steel cord layers against circumfer- ential direction	[26,-26]	deg
STEEL_CORDLAYER _STIFF	Cordlayer stiffness in cord angle direction (think Young E * thickness H)	[3000,3000]	N/mm
STEEL_CORDLAYER _DAMP	Cordlayer damping factor in cord angle di- rection	[5e-6 <i>,</i> 5e-6]	1/s
STEEL_CORDLAYER _STIFF_COMPRESSION _FACTOR	Cordlayer stiffness factor under compres- sion condition, direct multiplication	0.2	-
STEEL_CORDLAYER _L0_REDFACTOR	Cordlayer zero length factor relative to ref- erence configuration	[0.998 <i>,</i> 0.998]	-
NUMB_DISCRETE _STRIPES_IN_STEEL _CORDLAYER	Number of discrete stripes in steel cord layer	2	-
X_BENDING_STIFF	Bending stiffness in lateral direction (think Young E * thickness H^3/12)	12000	Nmm
X_BENDING_DAMP	Bending damping factor in lateral direction	0.0005	1/s
X_BENDING_STIFF_W	Bending stiffness weighting factors in lateral direction, ring entity	table	-
X_BENDING_ALPHANL	Angle where non-linear progression starts (it ends at angle 0)	0	rad
X_BENDING_EXPNL	Exponent of non-linear progression (c * (x-x0)^Y_BENDING_EXPNL))	1	-
X_BENDING_PREANGLE	Local zero angle relative to reference con- figuration	[0,0,, 0,0]	rad
X_BENDING_STIFF _UNILAT_ADDFACTOR	Additional local stiffness factor	[0,0,, 0,0]	-
Y_BENDING_STIFF	Bending stiffness in circumferential direc- tion (think Young E * thickness H^3/12)	8000	Nmm
Y_BENDING_DAMP	Bending damping factor in circumferential direction	0.0005	1/s

Name	Explanation	Default	Unit
Y_BENDING_STIFF_W	Bending stiffness weighting factors in cir- cumferential direction, segment entity	table	-
Y_BENDING_ALPHANL	Angle where non-linear progression starts (it ends at angle 0)	0	rad
Y_BENDING_EXPNL	Exponent of non-linear progression (c * (x-x0)^Y_BENDING_EXPNL))	1	-
XY_DIAG_BENDING _STIFF	Bending stiffness in diagonal direction (think Young E * thickness H^3/12)	10000	Nmm
XY_DIAG_BENDING _DAMP	Bending damping factor in diagonal direc- tion	0.0005	1/s
XY_DIAG_BENDING _STIFF_W	Bending stiffness weighting factors in diago- nal direction, segment entity	table	-
XY_BENDING_ ALPHANL	Angle where non-linear progression starts (it ends at angle 0)	0	rad
XY_BENDING_ EXPNL	Exponent of non-linear progression (c * (x-x0)^Y_BENDING_EXPNL))	1	-
TREAD_NSEN_X	Number of sensors per element in circum- ferential direction	7	-
TREAD_NSEN_Y	Number of sensors per element in lateral di- rection	5	-
TREAD_HEIGHT	Height of tread sensors	table	mm
TREAD_SCAN_HEIGHT	Height above ideal contact point on surface within where contact sensors are active	200	mm
TREAD_RAD_NL_TYPE	Type of progression of radial tread stiffness (0linear, 1Neo-Hooke-like)	1	-
TREAD_MAX_COMPRESS	Maximum relative compression of tread (capped and warning is issued)	0.95	-
TREAD_RAD_D	Radial tread damping factor	0.0001	1/s
TREAD_RAD_D _DEGRESSION_FACTOR	Radial tread damping residual factor (active above digression velocity)	1	-
TREAD_RAD_D _DEGRESSION_VEL	Radial tread damping digression velocity	0	mm/s
TREAD_E/H	Radial tread stiffness (think Young E / thickness H)	0.3	N/mm^3
TREAD_Gx/H	Tread shear stiffness in circumferential di- rection (think shear G / thickness H)	0.1	N/mm^3
TREAD_Gy/H	Tread shear stiffness in lateral direction (think shear G / thickness H)	0.1	N/mm^3

Name	Explanation	Default	Unit
TREAD_RUBBER_W	Local tread rubber stiffness modification, di- rect multiplication, optional	[1,,1]	-
TREAD_HEIGHT_REF	Optional scaling of tread stiffness properties with H_{REF} / H_{i}	Нмах	mm
MU	Relative friction coefficient e.g. [1.2, 1.2, 1.0]	table	-
V_MU	Sliding velocity e.g. [0.0, 1000, 10000]	table	mm/s
MU_GLOBAL _SCALEFACTOR	Optional global scaling factor of friction	1	-
MU_LOCAL_W	Optional local scaling of friction (to adapt for different tread rubber material)	table	-
MU_NSTRESS _DEPENDENCY	Optional normal stress dependent scaling of friction M from [n_{REF} , S, M _{MIN} , M _{MAX}] via M = 1 – S * (n / n_{REF} - 1)	[0.35,0.3, 0.7,1.3]	[MPa,-,-,-]
LOSSENERGY_FLAG	Toggle energy loss post-processing	0	-
THERMAL_MODEL_FLAG	Toggle CDTire/Thermal usage	0	-
CAVITY_MODEL_FLAG	Select cavity simulation model	0	-
ADVANCED	Scale rubber shear damping as function of rotational velocity via $[\omega_0, s_0, \omega_1, s_1]$, linear interpolation and constant extrapolation	[20,3,40,1]	[rad/s, -, rad/s, -]
CORRECT_WEIGHT _TO_NOMINAL_FLAG	Flag to mimic nominal tire weight	0	-
MASS_UPDATE _NOCAVITY	Add mass to belt to adjust part of missing cavity gas mass	0	t
LDE_FLAG	Toggle Large Deformation Element	0	-
LDE_Y_COORD	Lateral coordinate of LDE weighting	table	mm
LDE_W	LDE weighting spline	table	-
LDE_CNL	Radial LDE progression stiffness	1.0E-9	N/mm^2
LDE_CLIN	Radial LDE final stiffness	0	N/mm^2
LDE_RNL	Radial LDE progression radius	1.0E-9	mm
LDE_RLIN	Radial LDE final radius	0	mm
LDE_SCAN_RADIUS	Enable LDE search (from rim point)	20	mm
LDE_ACTIVE_RADIUS	Signal LDE is active (from rim point)	10	mm

Name	Explanation	Default	Unit
R_EFF	Unloaded effective radius	320	mm
R_STAT	Unloaded static radius	320	mm
CR1_STAT	Static linear radial stiffness	250	N/mm

[CAVITY MODEL PARAMETERS]

RADIUS_EFFECTIVE	Radius of gas column	260	mm
SOUND_VELOCITY	Velocity of sound	340000	mm/s
CFL_FACTOR	Courant number from Courant- Fiedrichs-Lewy condition	0.3	-
DX_RESAMPLE _FACTOR	Number of cavity dof's per segment	5	-
A_RIM	Cross section area of rim cavity not cov- ered by tire nodes	0	mm^2

[CDT40-N SOLVER PARAMETERS]

PREF	Reference inflation pressure	0.25	MPa
PIN_FLAG	Toggle pressure-dependency of sidewall	0	-
MASS_ADD_TO_BELT	(optional) parameter to accommodate the massless sidewall modeling	0.001	t
MASS_ADD_TO_RIM	Used for MBD_MASS_ADD_TO_RIM and MBD_MASS_SUB_FROM_WHEEL calcula- tion; does not effect tire simulation	0.001	t
IXX_ADD_TO_RIM	Same for MBD_IXX_xxx calculation	100	t mm^2
IYY_ADD_TO_RIM	Same for MBD_IYY_xxx calculation	200	t mm^2
IZZ_ADD_TO_RIM	Same for MBD_IZZ_xxx calculation	100	t mm^2
BEAD_OFFSET_Y	Lateral bead offset compensation	0	mm
BEAD_OFFSET_Z	Radial bead offset compensation	20	mm

Name	Explanation	Default	Unit
INPUT_MODE	Optionally switches sidewall model (0,1,2,3)	0	-
FTX	Natural frequency: Translation in x/z direction (mode $R_{1}^{})$	89.5	Hz
FTY	Natural frequency: Translation in y direction (mode $L_0^{}$)	45.7	Hz
FRY	Natural frequency: rotation around y axis (mode $ \mathrm{C}_{0} $)	65.4	Hz
DTX	Damping coefficient (mode $R_1^{}$)	0.05	-
DTY	Damping coefficient (mode $L_0^{}$)	0.05	-
DRY	Damping coefficient (mode $C_0^{}$)	0.05	-
SW_ANGLE	Reference sidewall angle for INPUT_MODE=1,2,3	28	Deg
CRX	Lateral rotational foundational sidewall stiffness for INPUT_MODE=2	5.5e6	Nmm
CRY	Circumferential rotational foundational sidewall stiffness for INPUT_MODE=2	7.0e6	Nmm
CRX_S	Lateral rotational structural sidewall stiffness for INPUT_MODE=3	3.2e6	Nmm
CRY_S	Circumferential rotational structural sidewall stiffness for INPUT_MODE=3	4.5e6	Nmm
SWBEND	Percent radial stiffness due to bending	20	-
CRY_RED_DEF	Deflection value at which reduction of circumferential rotational sidewall stiff- ness starts	0	mm
CRY_RED_RES	Residual stiffness factor of circumferen- tial rotational sidewall stiffness at full deflection	1	-
CRX_RED_DEF	Deflection value at which reduction of lateral rotational sidewall stiffness starts	0	mm
CRX_RED_RES	Residual stiffness factor of lateral rota- tional sidewall stiffness CRY at full de- flection	1	-

Name	Explanation	Default	Unit
Name	Explanation	Default	Unit

[CDT50-N SOLVER PARAMETERS]

TOL	Error tolerance of internal integrator	1.0E-4	-
TOL_EXCEPTION	Error tolerance of internal integrator in case of failed convergence	0.01	-
DTM	Maximum step size of internal integrator	5.0E-5	S
DTMIN	Minimum step size of internal integrator	1.0E-10	S
DT_START_EXPL	Initial step size of internal explicit integrator	5.0E-5	S
PRE_STEP_TIME	Duration of inflation pre-step before begin- ning of simulation	0.05	S
PRE_STEP_DEFLTIME	Duration of deflection pre-step before be- ginning of simulation (adjusted automati- cally)	0.2	S
PRE_STEP_SAFETY _MARGIN	Height above ideal contact point for initial inflation phase	10	mm
PRE_STEP_LDE_MARGIN	Minimal clearance (from rim point) for legal initial deflection	10	mm
FORCE_NOSUCCESS	Returned force value in case of no conver- gence	1.0e+10	Ν
ТҮРЕ	Explicit 1	1	-
ALPHA _EXPLICIT	Explicit Newmark alpha integrator value	0	-
BETA _EXPLICIT	Explicit Newmark beta integrator value	0.166667	-
GAMMA _EXPLICIT	Explicit Newmark gamma integrator value	0.5	-
UPDATE_FOR _MASTERCORRECTOR	Toggle corrector iterations to be taken into account (0 off, 1 on)	0	-

Name	Explanation	Default	Unit

TIRE A	ND RIN	✓ RESIZI	NG1
	_	_	

TIRE_REF	Reference tire specification	205/50R16 -
RIM_REF	Reference rim specification	16x6 -
TIRE_NEW	Target tire specification	225/45R17 -
RIM_NEW	Target rim specification	17x7 -

[CDT50-N ADVANCED OUTPUT PARAMETERS]

T_START	Start of output simulation time	0	S
T_END	End of output simulation time	100	S
DT_OUT	Output step size	0.01	S
OUTPUT_TIRESTATES	Flag to output the tire states (0 = off, 1 = on)	0	-
OUTPUT_ ROADCONTACTFORCES	Flag to output the road contact forces (0 = off, 1 = on)	0	-
TAKE_LOGFILE- NAME_AS_PREFIX	Naming convention of resulting output file	-	-

Road Parameters

The following paragraphs show detailed examples for

- equidistant track data and
- non-equidistant track data.

Each example contains a road definition file and a figure displaying the defined road surface.

Example for Equidistant Track Data (Data Type 2)

#	EXAMPLE EQUIDISTANT TRACK DATA							
#	X0_ROAD Y0_ROAD		Z0_ROAD		MU_ROAD			
	200.0	200.0	50.0	1	L.O			
#	DATA TYPE : EQUIDISTANT TRACK DATA							
	2							
#	# NTRACKS							
	2							
#	NDATA X0_	_TRACK YO	_TRACK	HALE	F_WIDTH	DX	MU_TRACK	
	21 -30	00 -1	.50	150		25	1.0	
	0.0000							
	-9.5492 -34.5492							
	-65.4508							
	-90.4508							
_	-100.0000							
	-90.4508							
	-65.4508							
	-34.5492							
	-9.5492							
	0.0000							
	-9.5492							
	-34.5492							
	-65.4508							
	-90.4508							
_	-100.0000							
	-90.4508							
	-65.4508							
	-34.5492							
	-9.5492							
щ				τιλττ	זייירידע ק	DV	MIL TDACK	
#	NDAIA AU_{-1}	LIKACK IU	O IKACK		-WIDIH	200	MU_IKACK	
	50 0000	50 55		T 0 0		200	T • O	
	100 0000							
T00.0000								

Fig. 7: Road Surface Model 1000: equidistant track

Example for Non-Equidistant Track Data (Data Type 3)

```
# EXAMPLE NON-EQUIDISTANT TRACK DATA
# X0_ROAD
            YO_ROAD
                      Z0_ROAD
                                 MU_ROAD
 200.0
            200.0
                      50.0
                                 1.0
# DATA TYPE : NON-EQUIDISTANT TRACK DATA
  3
# NTRACKS
  1
# NDATA
         X0_TRACK Y0_TRACK HALF_WIDTH
                                           MU_TRACK
 24
         -300
                    100
                              400
                                      1.0
     0.0000
               0.0000
    25.0000
              -9.5492
    50.0000 -34.5492
    75.0000
             -65.4508
   100.0000
            -90.4508
   125.0000 -100.0000
   225.0000 -100.0000
   250.0000
            -90.4508
   275.0000
            -65.4508
   300.0000
           -34.5492
   325.0000
              -9.5492
   350.0000
               0.0000
   450.0000
               0.0000
```

475.0000	9.5492
500.0000	34.5492
525.0000	65.4508
550.0000	90.4508
575.0000	100.0000
675.0000	100.0000
700.0000	90.4508
725.0000	65.4508
750.0000	34.5492
775.0000	9.5492
800.0000	0.0000

END

Fig. 8: Road Surface Model 1000: non-equidistant track

Warnings and Errors

For errors and warnings, please see the CDTire log files and/or the log files of the respective MBS solver run.