
Univa, An Altair Company

Grid Engine Documentation

Grid Engine Users’s Guide

Author:Altair Engineering Version:8.7.0

September 6, 2021

©2021ALTAIR ENGINEERING, INC. ALL RIGHTS RESERVED.
WE ARE CURRENTLY LISTED ON NASDAQ AS ALTR. UNIVA IS AN ALTAIR COMPANY

Contents

Contents

1 Overview of Basic User Tasks 1

2 A Simple Workflow Example 1

3 Displaying Altair Grid Engine Status Information 5
3.1 Cluster Overview . 5
3.2 Hosts and Queues . 5
3.3 Requestable Resources . 8
3.4 User Access Permissions and Affiliations . 10

4 Submitting Batch Jobs 13
4.1 What is a Batch Job? . 13
4.2 How to Submit a Batch Job . 13

4.2.1 Example 1: A Simple Batch Job . 13
4.2.2 Example 2: An Advanced Batch Job . 14
4.2.3 Example 3: Another Advanced Batch Job 14
4.2.4 Example 4: A Simple Binary Job . 15

4.3 Specifying Requirements . 15
4.3.1 Request Files . 16
4.3.2 Requests in the Job Script . 17

5 Using Job Classes to Prepare Templates for Jobs 17
5.1 Examples Motivating the Use of Job Classes . 18
5.2 Defining Job Classes . 19

5.2.1 Attributes describing a Job Class . 20
5.2.2 Example 1: Job Classes - Identity, Ownership, Access 22
5.2.3 Attributes to Form a Job Template . 22
5.2.4 Example 2: Job Classes - Job Template 25
5.2.5 Access Specifiers to Allow Deviation . 26
5.2.6 Example 3: Job Classes - Access Specifiers 28
5.2.7 Different Variants of the same Job Class 29
5.2.8 Example 4: Job Classes - Multiple Variants 30
5.2.9 Enforcing Cluster Wide Requests with the Template Job Class 31

Grid Engine Users’s Guide v 8.7.0 i

Contents

5.3 Relationship Between Job Classes and Other Objects 33
5.3.1 Resources Available for Job Classes . 33
5.3.2 Defining Job Class Limits . 34
5.3.3 JSV and Job Class Interaction . 34

5.4 Commands to Adjust Job Classes . 35
5.4.1 Creating, Modifying and Deleting Job Classes 35
5.4.2 States of Job Classes . 36

5.5 Using Job Classes to Submit New Jobs . 37
5.6 Example: Submit a Job Class Job and Adjust Some Parameters 38
5.7 Status of Job Classes and Corresponding Jobs 39

6 Monitoring and Controlling Jobs 40

6.1 Getting Status Information on Jobs . 40
6.2 Deleting a Job . 42
6.3 Re-queuing a Job . 43
6.4 Modifying a Waiting Job . 43

6.4.1 Altering Job Requirements . 44
6.5 Changing Job Priority . 44
6.6 Obtaining the Job History . 45

7 Other Job Types 46

7.1 Array Jobs . 46
7.2 Interactive Jobs . 48

7.2.1 qrsh and qlogin . 49
7.2.2 qmake . 49
7.2.3 qsh . 50

7.3 Parallel Jobs . 50
7.3.1 Parallel Environments . 51
7.3.2 Submitting Parallel Jobs . 53

7.4 m_numa_nodes Amount of NUMA nodes on the execution host. 60
7.4.1 Memory Allocation Strategy round_robin 61
7.4.2 Memory Allocation Strategy cores and cores:strict 62
7.4.3 Memory Allocation Strategy nlocal . 64

7.5 Checkpointing Jobs . 65
Grid Engine Users’s Guide v 8.7.0 ii

Contents

7.5.1 User-Level Checkpointing . 66
7.5.2 Kernel-Level Checkpointing . 66
7.5.3 Checkpointing Environments . 66
7.5.4 Submitting a Checkpointing Job . 67

7.6 Immediate Jobs . 68
7.7 Reservations . 68

7.7.1 Advance Reservations . 69
7.7.2 Standing Reservations . 72

7.8 Jobs using Docker Containers . 79
7.8.1 Running a sequential job in a Docker container 80
7.8.2 Running a parallel Job in Docker containers 83
7.8.3 Running MPI jobs in Docker containers 84
7.8.4 Running an array Job in Docker containers 84
7.8.5 Running a Job in a Docker image that is not available locally 85
7.8.6 Using placeholders to dynamically define Docker options 85
7.8.7 Support for nvidia-docker 2.0 . 86

8 Getting a Consistent View onto the System by Using Sessions 86

8.1 Communication with Altair Grid Engine without using Sessions 87
8.2 Using sessions to communicate with the system 87

9 Submission, Monitoring and Control via an API 89

9.1 The Distributed Resource Management Application API (DRMAA) 89
9.2 Basic DRMAA Concepts . 89
9.3 Supported DRMAA Versions and Language Bindings 90
9.4 When to Use DRMAA . 90
9.5 Environment Variable Influences . 90
9.6 Examples . 90

9.6.1 Building a DRMAA Application with C** 90
9.6.2 Building a DRMAA Application with Java 93

9.7 Further Information . 95

Grid Engine Users’s Guide v 8.7.0 iii

Contents

10 Advanced Concepts 95

10.1 Job Dependencies . 96
10.1.1 Examples . 96

10.2 Using Environment Variables . 98
10.3 Using the Job Context . 100
10.4 Transferring Data . 101

10.4.1 Transferring Data within the Job Script 101
10.4.2 Using Delegated File Staging in DRMAA Applications 102

10.5 Manual, Semi-Automatic and Automatic Preemption 103
10.5.1 Preemption Terms . 104
10.5.2 Preemption Trigger and Actions . 104
10.5.3 Manual Preemption . 106
10.5.4 Preemption Configuration . 107
10.5.5 Preemption in Combination with License Orchestrator 108
10.5.6 Common Use Cases . 108

11 Submitting Jobs from or to Windows hosts 110

11.1 Job submission from a Windows submit host to a Windows execution host . . 111
11.1.1 Running Jobs in the foreground . 112

11.2 Job submission from an UNIX submit host to a Windows execution host . . . 113
11.3 Job submission from a Windows submit host to an UNIX execution host . . . 114

Grid Engine Users’s Guide v 8.7.0 iv

2 A Simple Workflow Example

1 Overview of Basic User Tasks

Altair Grid Engine offers the following basic commands, tools and activities to accomplishcommon user tasks in the cluster:
Table 1: Basic tasks and their corresponding commands

Task Command
submit jobs qsub, qresub, qrsh, qlogin, qsh, qmakecheck job status qstatmodify jobs qalter, qhold, qrlsdelete jobs qdelcheck job accounting after job end qacctdisplay cluster state qstat, qhost, qselect, qquotadisplay cluster configuration qconf

qsh is not available on Microsoft Windows submit hosts and a qsh cannot be submittedto Windows execution hosts.
Note

The next sections provide detailed descriptions of how to use these commands in a AltairGrid Engine cluster.

2 A Simple Workflow Example

Using Altair Grid Engine from the command line requires sourcing the settings file to setall necessary environment variables. The settings file is located in the <AGE installation
path>/<AGE cell>/common directory. This directory contains two settings files for Unix:
settings.sh for Bourne shell, bash and compatible shells, and settings.csh for csh and
tcsh. If a Windows execution, submit or admin host is part of the Altair Grid Engine cluster,there is also a settings.bat for the Windows console (also known as cmd.exe window).
For simplicity, this document refers to the <AGE installation path> as $SGE_ROOT andthe <AGE_CELL> as $SGE_CELL. Both environment variables are set when the settings file issourced.
Source the settings file. Choose one of the following commands to execute based on theshell type in use.
Bourne shell/bash:

. $SGE_ROOT/$SGE_CELL/common/settings.sh

csh/tcsh:

Grid Engine Users’s Guide v 8.7.0 1

2 A Simple Workflow Example

source $SGE_ROOT/$SGE_CELL/common/settings.csh

Windows console:
> %SGE_ROOT%\%SGE_CELL%\common\settings.bat

Now that the shell is set up to work with Altair Grid Engine, it is possible to check whichhosts are available in the cluster by running the qhost command.
Sample qhost output:
qhost
HOSTNAME ARCH NCPU LOAD MEMTOT MEMUSE SWAPTO SWAPUS

global - - - - - - -
kailua lx-amd64 4 1.03 7.7G 2.2G 8.0G 0.0
halape lx-x86 2 0.00 742.8M 93.9M 752.0M 0.0
kahuku lx-amd64 2 0.01 745.8M 103.8M 953.0M 0.0

The sample qhost output above shows three hosts available, all of which run Linux (lx-),two in 64 bit (amd64), one in 32 bit mode (x86). One provides 4 CPUs; the other two just 2CPUs. Two hosts are idle but have approximately 740 MB RAM available, while the third isloaded by 25% (LOAD divided by NCPU) and has 7.7 GB RAM in total.
This sample cluster has more than enough resources available to run a simple examplebatch job. Use the qsub command to submit a batch job. From the example job scripts in
$SGE_ROOT/examples/jobs, submit sleeper.sh.

The following example applies only to UNIX submit and execution hosts. How to submitthe following job from or to a Windows host is explained in Submitting Jobs from or toWindows hosts.

Note

qsub $SGE_ROOT/examples/jobs/sleeper.sh
Your job 1 ("Sleeper") has been submitted

The qsub command sent the job to the Qmaster to determine which execution host is bestsuited to run the job. Follow the job’s different stages with the qstat command:
• Immediately after submission, the job is in state qw (queued, waiting) in the pendingjob list.

qstat shows the submit time (when the job was submitted to the Qmaster from the qsubcommand on the submit host).
qstat
job-ID prior name user state submit/start at queue slots ja-task-ID

1 0.00000 Sleeper jondoe qw 03/10/2011 19:58:35 1

Grid Engine Users’s Guide v 8.7.0 2

2 A Simple Workflow Example

If running on a Windows execution host, the job name will be “cmd.exe”.
Note

• A few seconds later, qstat shows the job in state r (running) and in the run queue all.qon host kahuku.
Since the job is running, qstat shows the start time (when the job was started on the execu-tion host). A priority was automatically assigned to the job. Priority assignment is explainedlater in this document.
qstat
job-ID prior name user state submit/start at queue slots ja-task-ID

1 0.55500 Sleeper jondoe r 03/10/2011 19:58:42 all.q@kahuku 1

Between the states qw and r, the job may be in state t (transferring) for a short time orstate l (waiting for license). Occasionally, these states can also be seen in the qstat output.
Note

While a job is running, use the qstat -j <job-ID> command to display its status:
qstat -j 1
==
job_number: 1
exec_file: job_scripts/1
submission_time: Thu Mar 11 19:58:35 2011
owner: jondoe
uid: 1000
group: users
gid: 100
sge_o_home: /home/jondoe
sge_o_log_name: jondoe
sge_o_path: /gridengine/bin/lx-amd64:/usr/local/sbin:

/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:.
sge_o_shell: /bin/tcsh
sge_o_workdir: /gridengine
sge_o_host: kailua
account: sge
hard resource_list: hostname=kailua
mail_list: jondoe@kailua
notify: FALSE
job_name: Sleeper
jobshare: 0
shell_list: NONE:/bin/sh

Grid Engine Users’s Guide v 8.7.0 3

2 A Simple Workflow Example

env_list:
job_args: 3600
script_file: /gridengine/examples/jobs/sleeper.sh
binding: NONE
usage 1: cpu=00:00:00, mem=0.00000 GBs, io=0.00003,

vmem=8.008M, maxvmem=8.008M
binding 1: NONE
scheduling info: (Collecting of scheduler job information

is turned off)

This simple sleeper job does nothing but sleep on the execution host. It doesn’t need input,but it outputs two files in the home directory of the user who submitted the job: Sleeper.o1and Sleeper.e1. The Sleeper.e1 file contains whatever the job printed to stderr, and itshould be empty if the job ran successfully. The Sleeper.o1 file contains what the jobprinted to stdout, for example:
Here I am. Sleeping now at: Thu Mar 10 20:01:10 CET 2011
Now it is: Thu Mar 10 20:02:10 CET 2011

Altair Grid Engine also keeps records of this job, as shown with the qacct command:
qacct -j 1
==
qname all.q
hostname kailua
group users
owner jondoe
project NONE
department defaultdepartment
jobname Sleeper
jobnumber 10
taskid undefined
account sge
priority 0
qsub_time Thu Mar 10 19:58:35 2011
start_time Thu Mar 10 19:58:42 2011
end_time Thu Mar 10 19:59:43 2011
granted_pe NONE
slots 1
failed 0
exit_status 0
ru_wallclock 61
ru_utime 0.070
ru_stime 0.050
ru_maxrss 1220
ru_ixrss 0
ru_ismrss 0
ru_idrss 0

Grid Engine Users’s Guide v 8.7.0 4

3 Displaying Altair Grid Engine Status Information

ru_isrss 0
ru_minflt 2916
ru_majflt 0
ru_nswap 0
ru_inblock 0
ru_oublock 176
ru_msgsnd 0
ru_msgrcv 0
ru_nsignals 0
ru_nvcsw 91
ru_nivcsw 8
cpu 0.120
mem 0.001
io 0.000
iow 0.000
maxvmem 23.508M
arid undefined

Refer to the accounting(5) man page for the meaning of all the fields output by the qacctcommand.

3 Displaying Altair Grid Engine Status Information

3.1 Cluster Overview

Several commands provide different perspectives on Altair Grid Engine cluster status infor-mation.
• qhost displays the status of Altair Grid Engine hosts, queues and jobs from the hostperspective.
• qstat shows information about jobs, queues, and queue instances.
• qconf command, which is mainly used by the administrator for configuring the clus-ter, also shows the configuration of the cluster. Use it to understand why the clustermakes some decisions or is in a specific state.

3.2 Hosts and Queues

Altair Grid Engine monitoring and management centers around two main configurationobject types: hosts and queues.
• A host represents a node in the cluster, physical or virtual. Each host has an associatedhost configuration object that defines the properties of that host. In addition, AltairGrid Engine has a global host configuration object that defines default values for allhost properties. Any host that either does not have an associated host configurationobject or has a host configuration object that does not set values for all host propertieswill inherit all or some property values from the global host configuration object.

Grid Engine Users’s Guide v 8.7.0 5

3 Displaying Altair Grid Engine Status Information

• A queue is a set of global configuration properties that govern all instances of thequeue. An instance of a queue on a specific host inherits its queue configuration prop-erties from the queue. A queue instance may, however, explicitly override some or allof the queue configuration properties.
• Jobs are executed on a host within the context of a queue instance. Pending jobs waitin a global pending job list where they wait to be assigned by the scheduler to a queueinstance. Altair Grid Engine provides the following commands to display the states ofthese objects or to configure them:
• qhost shows the cluster status from the execution host perspective.
• qstat shows the cluster status from the job or queue perspective.
• qconf displays the cluster configuration and allows administrators to change configu-rations.

qhost

The qhost command shows the cluster status from the execution host perspective.
qhost

Calling just qhost by itself prints a table that lists the following information about the exe-cution hosts:
• architectures
• number of cores
• current load
• total RAM
• currently used RAM
• total swap space
• currently used swap space

The line “global” appears there, representing the global host, a virtual configuration objectthat provides defaults for all attributes of the real hosts that are not filled by real data. It’slisted here just for completeness.
qhost -q -j

• Using the -j option, qhost lists all currently running jobs underneath the hosts onwhich they are running.
• Using the -q option, qhost displays all queues that have instances on a host, under-neath the corresponding host.

Grid Engine Users’s Guide v 8.7.0 6

3 Displaying Altair Grid Engine Status Information

Using both switches at once, it’s possible to get a comprehensive overview over the clusterin a relatively compact output format. To prevent lengthy output in larger clusters, qhostprovides several options to filter the output.
• Use the -h hostlist option to display only the information about the listed hosts.
• Use the -l attr=val,... option to specify more complex filters. See section Re-questable Attributes for more details.

For example, the following command displays only hosts of a specific architecture:
qhost -l arch=lx-amd64

• Use the -u user,... option to show only jobs from the specified users. This impliesthe -j option.
• Use the -F [attribute] option to list either all the resources an execution host pro-vides or just the selected ones.

See the qhost(1)man page for a detailed description of all options.
qstat
To view the cluster from the queue or job perspective, use the qstat command.

• Without any option, the qstat command lists all jobs of the current user.
• The -ext option can be added to most options of qstat and causes more attributes tobe printed.
• With the -u "*" option (the asterisk must be enclosed in quotes!), the jobs of allusers are displayed. With -u <user,...> only the jobs of the specified users are listed.
• With the -g c option, the status of all cluster queues is displayed.
• The -j <job-ID> option prints information about the specified job of the current user.With a list of job-IDs or "*", this information is printed for the specified jobs or alljobs of the current user.
• The -j option without any job-ID prints information about all pending jobs of the cur-rent user.

qstat -f

• The -f option shows the full output of all queue instances with the jobs running inthem. By default, just the jobs of the current user; add -u "*" to get all jobs listed forall users.
qstat -F

• The -F option shows all resources the queue instances provide.
Grid Engine Users’s Guide v 8.7.0 7

3 Displaying Altair Grid Engine Status Information

The following are several options to filter queues:
• By name (-q queue_list)
• By any provided resource (-l resource_list)
• By queue state (-qs {a|c|d|o|s|u|A|C|D|E|S})
• By parallel environments (-pe pe_list)
• Access permissions for specific users (-U user_list) and to filter out queue instanceswhere no job of the current or specified user(s) is running.

Jobs can also be filtered.
• by state (-s {p|r|s|z|S|N|P|hu|ho|hs|hd|hj|ha|h|P|N|S|a})
• by the job submitting user (-u user_list)

3.3 Requestable Resources

Each Altair Grid Engine configuration object (global, queue, host) has several resourceswhose values are either reported by loadsensors, reported by the OS or configured by amanager or an operator.
These are resources such as the execution host architecture, number of slots in the queue,current load of the host or configured complex variables. A job can request to be executedin an environment with specific resources. These requests can be hard or soft: a hard re-quest denotes that a job can run only in an environment that provides at least the requestedresource, while a soft request specifies that the job should be executed in an environmentthat fulfills all soft requests as much as possible.
In all commands, no matter if they are made for job submission or if they are made forlisting the provided resources, the option to specify the requested resources is always -l
<resource>=<value>. Each resource has a value of one of the following types:

• boolean
• integer
• float
• string
• regular expression string

For example, the following command submits a job that can run on hosts with Solaris on a64-bit Sparc CPU:
qsub -l arch=sol-sparc64 job

Grid Engine Users’s Guide v 8.7.0 8

3 Displaying Altair Grid Engine Status Information

By default, this is a hard request. To specify it as a soft request, the commandwould changeto the following:
qsub -soft -l arch=sol-sparc64 job

The -soft option denotes that all following -l resource=value requests should be seen assoft requests. With -hard the requests can be switched back to hard requests. This can beswitched as often as necessary, as shown in the following example:
qsub -soft -l arch=sol-sparc64 -hard -l slots>4 -soft -l h_vmem>300M -hard -l num_cpus>2 job

Using wildcards in resource requests is also permitted.
qsub -l arch="sol-*" job

This command requests the job to be scheduled on any Solaris host.

The quotes (") are necessary to prevent the shell from expanding the asterisk "*".
Note

To show the list of resources a queue instance provides, enter the following command:
qstat -F

Sample qstat output is shown below.
queuename qtype resv/used/tot. load_avg arch states

all.q@kailua BIPC 0/0/40 1.14 lx-amd64

hl:arch=lx-amd64
hl:num_proc=4
hl:mem_total=7.683G
hl:swap_total=7.996G
hl:virtual_total=15.679G
hl:load_avg=1.140000
hl:load_short=1.150000
hl:load_medium=1.140000
hl:load_long=1.310000
hl:mem_free=2.649G
hl:swap_free=7.996G
hl:virtual_free=10.645G
hl:mem_used=5.034G
hl:swap_used=0.000
hl:virtual_used=5.034G
hl:cpu=17.100000

Grid Engine Users’s Guide v 8.7.0 9

3 Displaying Altair Grid Engine Status Information

hl:m_topology=SCTTCTT
hl:m_topology_inuse=SCTTCTT
hl:m_socket=1
hl:m_core=2
hl:m_thread=4
hl:np_load_avg=0.285000
hl:np_load_short=0.287500
hl:np_load_medium=0.285000
hl:np_load_long=0.327500
qf:qname=all.q
qf:hostname=kailua
qc:slots=40
qf:tmpdir=/tmp
qf:seq_no=0
qf:rerun=0.000000
qf:calendar=NONE
qf:s_rt=infinity
qf:h_rt=infinity
qf:s_cpu=infinity
qf:h_cpu=infinity
qf:s_fsize=infinity
qf:h_fsize=infinity
qf:s_data=infinity
qf:h_data=infinity
qf:s_stack=infinity
qf:h_stack=infinity
qf:s_core=infinity
qf:h_core=infinity
qf:s_rss=infinity
qf:h_rss=infinity
qf:s_vmem=infinity
qf:h_vmem=infinity
qf:min_cpu_interval=00:05:00

The resource list consists of three fields: <type>:<name>=<value>. The type is composed oftwo letters.
• The first letter denotes the origin of this resource.

– h for host
– q for queue

• The second letter denotes how the value is acquired.
– l for load sensor
– f for fixed, i.e. statically configured in the cluster, host or queue configuration
– c for constant

3.4 User Access Permissions and Affiliations

In Altair Grid Engine, there are three general categories of users:
Grid Engine Users’s Guide v 8.7.0 10

3 Displaying Altair Grid Engine Status Information

Table 2: User Categories
User Category Description
managers By default, there is always one default manager, the Altair GridEngine administrator. Managers have universal permission in AltairGrid Engine.operators Operators have the permissions to modify the state of specificobjects, e.g. enable or disable a queue.other users All other users only have permission to submit jobs, to modify anddelete their own jobs, and to get information about the clusterstatus.

Managers are defined by the global manager list, which can be accessed through qconfoptions:
Table 3: qconf Options for Updating the Global Manager List

Option Description
-am user_list add user(s) to the manager list
-dm user_list delete user(s) from the manager list
-sm show a list of all managers

qconf provides the similar options for operators:
Table 4: qconf Options for Updating the Operator List

Option Description
-ao user_list add user to the operator list
-do user_list delete user from the operator list
-so show a list of all operators

By default, all users known to the operating system can use Altair Grid Engine as normalusers. On Windows hosts, all normal Windows Active Domain users can use Altair GridEngine as normal users if the short names are the same as on the UNIX hosts. Whenever auser name is used or configured in Altair Grid Engine, use the short name of the WindowsActive Domain user name.
Each object of Altair Grid Engine uses the configuration values set in user_list and
xuser_list to determine who is allowed to use an object. The user_list explicitly allowsaccess, whereas the xuser_list explicitly disallows access. This access is controlledthrough corresponding, but opposite, values. For example, the lists have values acl and
xacl which function exactly opposite of each other. If a user is disallowed in the globalcluster configuration (by using xacl), he may not use any object of Altair Grid Engine: hemay not submit any job, but he can still get information from the cluster using qstat, qhostand so on.

Grid Engine Users’s Guide v 8.7.0 11

3 Displaying Altair Grid Engine Status Information

Users mentioned in the user_list are allowed to use Grid Engine, but users mentioned inthe xuser_list are disallowed. If a user is mentioned in both, the xuser_list takes prece-dence, so he is disallowed to use the object. If a user_list is defined, only users mentionedthere are allowed to use the object. If a xuser_list is defined and the user_list is unde-fined, then all users except the ones mentioned in the xuser_list are allowed to use theobject.

The user_list and xuser_list accept only user sets, not user names. So it’s necessary todefine user sets before using these options of qconf.
Note

Table 5: qconf Options for Updating the User List
Option Description
-au user_list listname_list add user(s) to user set list(s)-Au fname add user set from file-du user_list listname_list delete user(s) from user set list(s)-dul listname_list delete user set list(s) completely-mu listname_list modify the given user set list-Mu fname modify user set from file-su listname_list show the given user set list-sul show a list of all user set lists

A user set contains more information than just the names of the users in this set: see theman page access_list(5) for details. User sets can be defined by specifying UNIX usersand primary UNIX groups, which must be prefixed by an @ sign. There are two types of usersets: Access lists (type ACL) and departments (type DEPT). Pure access lists allow enlistingany user or group in any access list.
When using departments, each user or group may only be enlisted in one department, inorder to ensure a unique assignment of jobs to departments. For the jobs whose users donot match with any of the users or groups enlisted under entries, the default departmentis assigned.

Table 6: Man Pages to See for Further Reference
Subject Man Pages
user_list and xuser_list sge_conf(5), queue_conf(5), host_conf(5) and sge_pe(5)
acl and xacl lists project(5)user lists format access_list(5)options to specify users anduser sets qconf(1)

Grid Engine Users’s Guide v 8.7.0 12

4 Submitting Batch Jobs

4 Submitting Batch Jobs

4.1 What is a Batch Job?

A batch job is a single, serial work package that gets executed without user interaction. Thiswork package can be any executable or script that can be executed on the execution host.Attached to this work package are several additional attributes that define how Altair GridEngine handles the job and that influence the behavior of the job.

4.2 How to Submit a Batch Job

From the command line, batch jobs are submitted using the qsub command. Batch jobs canalso be submitted using the deprecatedGUI qmon or using theDRMAA (Distributed ResourceManagement Application) interface.

qmon and DRMAA are not supported on Windows submit hosts.
Note

Batch jobs are typically defined by a script file located at the submit host. This script pre-pares several settings and starts the application that does the real work. Altair Grid Enginetransfers this script to the execution host, where it gets executed. Alternately, the script canbe read from stdin instead of from a file. For a job that is just a binary to be executed on theremote host, the binary is typically already installed on the execution host, and thereforedoes not need to be transferred from the submit host to the execution host.

The default shell for a queue is /bin/sh. As the Grid Engine Administrator you can changethe default shell by modifying the shell parameter in the queue configuration (qconf -mq
<queue-name>).

Note

4.2.1 Example 1: A Simple Batch Job

To submit a simple batch job that uses a job script and default attributes, run the followingcommand:
qsub $SGE_ROOT/examples/jobs/simple.sh

See Windows examples for how to submit the following examples jobs from or to a Win-dows host.
Note

Grid Engine Users’s Guide v 8.7.0 13

4 Submitting Batch Jobs

If this command succeeds, the qsub command should print the following note:
Your job 1 ("simple.sh") has been submitted

Now check the status of the job while the job is running:
qstat

If qstat does not print any information about this job, it has already finished. Note that
simple.sh is a short running job. The output of the job will be written to ~/simple.sh.o1and the error messages to ~/simple.sh.e1, where ~ is the home directory on the executionhost of the user who submitted the job.
4.2.2 Example 2: An Advanced Batch Job

qsub allows several attributes and requirements to be defined using command line optionsat the time the job is submitted. These attributes and requirements can affect how the jobgets handled by Altair Grid Engine and how the job script or binary is executed. For example,the following command defines these attributes of the job:
qsub -cwd -S /bin/xyshell -i /data/example.in -o /results/example.out -j
y example.sh arg1 arg2

Table 7: Explanation of Command Line Options in Example 2
Option Description
-cwd The job will be executed in the same directory as the currentdirectory-S /bin/xyshell The shell /bin/xyshell will be used to interpret the job script.-i /data/example.in The file “/data/example.in” on the execution host will be used asinput file for the job.-o/results/example.out The file “/results/example.out” on the execution host will beused as output file for the job.-j y Job output to stderr will be merged into the“/results/example.out” file.example.sh arg1 arg2 The job script is “example.sh” must exist locally and getstransferred to the execution host by Altair Grid Engine. arg1and arg2 will be passed to this job script.

4.2.3 Example 3: Another Advanced Batch Job

qsub -N example3 -P testproject -p -27 -l a=lx-amd64 example.sh

Grid Engine Users’s Guide v 8.7.0 14

4 Submitting Batch Jobs

Table 8: Explanation of Command Line Options in Example 3
Option Description
-N example2 The job will get the name “example3” instead of the default namewhich is the name of the job script.-P testproject The job will be part of the project “testproject”.-p -27 The job will be scheduled with a lower priority than by default.-l a=lx-amd64 The job can get scheduled only to a execution host that provides thearchitecture “lx-amd64”.example.sh The job script without any arguments.

4.2.4 Example 4: A Simple Binary Job

qsub -b y firefox

The -b y option tells Altair Grid Engine that this is a binary job; the binary does alreadyexist on the execution host and doesn’t have to be transferred by Altair Grid Engine fromthe submit to the execution host.
See the qsub(5)man page for an explanation of all possible qsub options.
4.3 Specifying Requirements

qsubprovides three options to specify the requirements thatmust be fulfilled in order to runthe job on the execution host. These are requirements like the host architecture, availablememory, required licenses, specific script interpreters installed, and so on.
These resource requirements are specified on the qsub command line using the -l option.For example, to ensure the job gets scheduled only to a host that provides the architecturetype lx-x86, i.e. Linux on a x86 compatible 32 bit CPU, issue the following qsub option:
qsub -l arch=lx-x86 my_job.sh

Specifying several requirements at once and using wildcards inside a requirement is possi-ble, as in the following example:
qsub -l a="sol-*|*-amd" -l h="node??" job.sh

This example specifies that the job requestsmust be scheduled to a hostwhose architecturestring starts with sol- and/or ends with amd64. At the same time, the hostname of theexecution host must start with node and have exactly two additional trailing characters.
There are two different kinds of requests, hard and soft requests.

• A hard request must be fulfilled in order to schedule the job to the host.
• A soft request should be fulfilled. Grid Engine tries to fulfill as many soft requests aspossible.

Grid Engine Users’s Guide v 8.7.0 15

4 Submitting Batch Jobs

By default, all requests specified by the -l option are hard requests. The -soft optionswitches the behaviour: starting with the -soft option, all subsequent requests are consid-ered soft requests. A “-hard” option in the command line switches back to hard requests.“-hard” and “-soft” can be specified as often as necessary.
Example:
qsub -soft -l host="node??" -hard -l h_vmem=2G -l arch="sol*" -soft -l cpu=4

As described above in the section Requestable Resources, the attributes that are providedby all queue instances can be listed using qstat:
qstat -F

To specify a particular queue instance, use the -q option:
qstat -F -q all.q@kailua

As an alternative to specifying job requirements on the command line each time a job issubmitted, default requirements can be specified by the job submitting user and the AltairGrid Engine administrator.
Requirements are evaluated in the following order:

• Request files
• Requests in job script
• Command line
• Options defined later (e.g., at command line) override options defined earlier (e.g., inthe job script)

Note that soft and hard requirements are collected separately.
Note

4.3.1 Request Files

Request files allow options to be set automatically for all jobs submitted. Request files areread in the following order:
• The global request file $SGE_ROOT/$SGE_CELL/default/sge_request
• The private user request file $HOME/.sge_request
• The application specific request file $cwd/.sge_request

Grid Engine Users’s Guide v 8.7.0 16

5 Using Job Classes to Prepare Templates for Jobs

• The qsub command line
Since the request files are read in order, any option defined in more than one of themis overridden by the last-read occurrence, except for options that can be used multipletimes on a command line. The resulting options are used as if they were written in theqsub command line, while the real qsub command line is appended to it, again overridingoptions that were specified in one of the three files. At any time, the “-clear” option can beused to discard all options that were defined previously.
In these request files, each line can contain one or more options in the same format as inthe qsub command line. Lines starting with the hash sign (#) in the first column are ignored.See the sge_request(5) man page for additional information.
4.3.2 Requests in the Job Script

Specifying requests in a Windows job script is not supported.
Note

Submit options can also be defined in the jobs script. Each line of the job script that startswith #$ or with the prefix that is defined using the -C option is considered to be a line thatcontains submit options, as in the following example:
#!/bin/sh

#$ -P testproject
#$ -o test.out -e test.err

echo "Just a test"

These options are read and parsed before the job is submitted and are added to the jobobject. The location where in the job script these options are defined does not matter, butthe order matters - if two options override each other, the last one wins.

5 Using Job Classes to Prepare Templates for Jobs

When Altair Grid Engine jobs are submitted then various submit parameters have to bespecified either as switches which are passed to command line applications or throughcorresponding selections in the graphical user interface. Some of those switches define theessential characteristics of the job, others describe the execution context that is required sothat the job can be executed successfully. Another subset of switches needs to be specifiedonly to give Altair Grid Engine the necessary hints on how to handle a job correctly so thatit gets passed through the system quickly without interfering with other jobs.
In small and medium sized clusters with a limited number of different job types this is notproblematic. The number of arguments that have to be specified can either be written into

Grid Engine Users’s Guide v 8.7.0 17

5 Using Job Classes to Prepare Templates for Jobs

default request files, embedded into the job script, put into an option file (passed with -@of qsub) or they can directly be passed at the command line.
Within larger clusters or when many different classes of jobs should run in the cluster thenthe situation is more complex and it can be challenging for a user to select the right com-bination of switches with appropriate values. Cluster managers need to be aware of thedetails of the different job types that should coexist in the cluster so that they can setupsuitable policies in line with the operational goals of the site. They need to instruct the usersabout the details of the cluster setup so that these users are able to specify the requiredsubmission requests for each job they submit.
Job classes have been introduced in Altair Grid Engine 8.1 to be able to:

• Specify job templates that can be used to create new jobs.
• Reduce the learning curve for users submitting jobs.
• Avoid errors during the job submission or jobs which may not fit site requirements.
• Ease the cluster management for system administrators.
• Providemore control to the administrator for ensuring jobs are in line with the clusterset-up.
• Define defaults for all jobs that are submitted into a cluster.
• Improve the performance of the scheduler component and thereby the throughputin the cluster.

5.1 Examples Motivating the Use of Job Classes

Imagine you have users who often make mistakes specifying memory limits for a specificapplication called memeater. You want to make it easy for them by specifying meaningfuldefaults but you also want to give them the freedom to modify the memory limit defaultaccording to their needs. Then you could use the following job class configuration (only anexcerpt of the full configuration is shown):
jcname memeater
variant_list default
owner NONE
user_lists NONE
xuser_lists NONE
...
CMDNAME /usr/local/bin/memeater
...
l_hard {~}{~}h_vmem=6GB
...

Without going into the specifics of the job class syntax, the above job class will use a defaultof 6 GB for the memory limit of the job. It will however be feasible for users to modify thislimit. Here are two examples for how users would submit a job based on this job class. The
Grid Engine Users’s Guide v 8.7.0 18

5 Using Job Classes to Prepare Templates for Jobs

first maintaining the default, the second modifying it to 8 GB (again without going into thedetails of the syntax being used here):
qsub -jc memeater
qsub -jc memeater -l h_vmem=8GB

Now assume a slightlymodified scenario where youwant to restrict a certain group of userscalled novice to only use the preset of 6 GB while another group of users called expert caneither use the default or can modify the memory limit. The following job class examplewould accomplish this. And the trick is that job classes support so called variants as well asuser access lists:
jcname memeater
variant_list default, advanced
owner NONE
user_lists novice, [advanced=expert]
xuser_lists NONE
...
CMDNAME /usr/local/bin/memeater
...
l_hard h_vmem=6GB,[{~}advanced={~}h_vmem=6GB]
...

With this job class configuration, the novice users would only be able to submit their jobusing the first command example below while expert users could use both examples:
qsub -jc memeater
qsub -jc memeater.advanced -l h_vmem=8GB

The two use cases for job classes above are only snippets for all the different scenarios towhich job classes may be applied and they only provide a glimpse onto the features of jobclasses. The next sections describe all attributes forming a job class object, commands thatare used to define job classes as well as how these objects are used during job submissionto form new jobs. A set of examples with growing functionality will illustrate further usecases. This will be followed by describing how job classes can be embedded with otherparts of a Altair Grid Engine configuration to extract the maximum benefit from job classes.Finally, specific means for monitoring job class jobs will be shown.

5.2 Defining Job Classes

A job class is a new object type in Altair Grid Engine. Objects of this type can be defined bymanagers and also by users of a Altair Grid Engine Cluster to prepare templates for jobs.Those objects can later on be used to create jobs.

Grid Engine Users’s Guide v 8.7.0 19

5 Using Job Classes to Prepare Templates for Jobs

Like other configuration objects in Altair Grid Engine each job class is defined by a set ofconfiguration attributes. This set of attributes can be divided into two categories. The firstcategory contains attributes defining a job class itself and the second category all thosewhich form the template which in turn eventually gets instantiated into new jobs.
5.2.1 Attributes describing a Job Class

Following attributes describe characteristics of a job class:
Table 9: Job Class Attributes

Attribute Value specification
jcname The jcname attribute defines a name that uniquely identifies a jobclass.Please note that NO_JC and ANY_JC are reserved keywords thatcannot be used as names for new job classes. There is one particularjob class with the special name template. It acts as template for allother job classes and the configuration of this job class template canonly be adjusted by users having the manager role in Altair GridEngine. This gives manager accounts control about default settings,some of which also can be set so that they must not be changed (seebelow for more information on how to enforce options).variant_list Job classes may, for instance, represent an application type in acluster. If the same application should be started with variousdifferent settings in one cluster or if the possible resource selectionapplied by Altair Grid Engine system should depend on the modehow the application should be executed then it is possible to defineone job class with multiple variants. A job class variant can be seen asa copy of a job class that differs only in some aspects from theoriginal job class.

Grid Engine Users’s Guide v 8.7.0 20

5 Using Job Classes to Prepare Templates for Jobs

Attribute Value specification
The variant_list job class attribute defines the names of all existingJob Class variants. If the keyword NONE is used or when the listcontains only the word default then the job class has only one variant.If multiple names are listed here, that are separated by commas,then the job class will have multiple variants. The default variantalways has to exist. If the variant_list attribute does not contain theword default then it will be automatically added by the Altair GridEngine system.Other commands that require a reference of a job class can eitheruse the jcname to refer to the default variant of a job class or theycan reference a different variant by combining the jcname with thename of a specific variant. Both names have to be separated by a dot(.) character.owner_list The owner_list attribute denotes the ownership of a job class. Asdefault the user that creates a job class will be the owner. Only thisuser and all managers are allowed to modify or delete the job classobject. Managers and owners can also add additional user names tothis list to give these users modify and delete permissions. If amanager creates a job class then the owner_list will be NONE toexpress that only managers are allowed to modify or delete thecorresponding job class. Even if a job class is owned only bymanagers it can still be used to create new jobs. The right to derivenew jobs from a job class can be restricted with the user_list andxuser_list attributes explained below.user_list The user_list job class parameter contains a comma separated list ofAltair Grid Engine user access list names or user names. User nameshave to be prefixed with a percent character (%). Each userreferenced in the user_list and each user in at least one of theenlisted access lists has the right to derive new jobs from this jobclass using the -jc switch of one of the submit commands. If theuser_list parameter is set to NONE (the default) any user can use thejob class to create new jobs if access is not explicitly excluded via thexuser_lists parameter described below. If a user is contained both inan access list enlisted in xuser_lists and user_lists the user is deniedaccess to use the job class.xuser_list The xuser_list job class contains a comma separated list of Altair GridEngine user access list names or user names. User names have to beprefixed with a percent character (%). Each user referenced in thexuser_list and each user in at least one of the enlisted access lists isnot allowed to derive new jobs from this job class. If the xuser_listparameter is set to NONE (the default) any user has access. If a useris contained both in an access list enlisted in xuser_lists and user_liststhe user is denied access to use the job class.

Grid Engine Users’s Guide v 8.7.0 21

5 Using Job Classes to Prepare Templates for Jobs

5.2.2 Example 1: Job Classes - Identity, Ownership, Access

Below you can find an example for the first part of a sleeper job class. It will be enhancedin each of the following chapters to illustrate the use of job classes.
jcname sleeper
variant_list NONE
owner NONE
user_lists NONE
xuser_lists NONE
...

sleeper is the unique name that identifies the job class (jcname sleeper). This job classdefines only the default variant because noother variant names are specified (variant_list
NONE). The job class does not specify an owner (owner NONE) as a result it can only be changedor deleted by users having the manager role. Managers and all other users are allowed toderive new jobs from this job class. Creating new jobs is not restricted (user_lists NONE;
user_lists NONE).
5.2.3 Attributes to Form a Job Template

Additionally to the attributesmentioned previously each job class has a set of attributes thatform a job template. In most cases the names of those additional attributes correspondto the names of command line switches of the qsub command. The value for all theseadditional attributesmight either be the keyword UNSPECIFIED or itmight be the same valuethat would be passed with the corresponding qsub command line switch.
All these additional job template attributes will be evaluated to form a virtual command linewhen a job class is used to instantiate a new job. All attributes for which the correspond-ing value contains the UNSPECIFIED keyword will be ignored whereas all others define thesubmit arguments for the new job that will be created.
All template attributes can be divided in two groups. There are template attributes thataccept simple attribute values (like a character sequence, a number or the value yes or no)and there are template attributes that allow to specify a list of values or a list of key/valuepairs, like the list of resource requests a job has or the list of queues where a job might getexecuted.
The table below contains all available template attributes. The asterisk character (*) tags allattributes that are list based. Within the description the default for each attribute is docu-mented that will be used when the keyword UNSPECIFIED is used in the job class definition.

Grid Engine Users’s Guide v 8.7.0 22

5 Using Job Classes to Prepare Templates for Jobs

Table 10: Job Class Attributes to Form a Job Template
Attribute Value specification
a Specifies the time and date when a job is eligible for execution. Ifunspecified the job will be immediately eligible for execution. Formatof the character sequence is the same as for the argument that mightbe passed with qsub -a.A Account string. The string sge will be used when there is no accountstring specified or when it is later on removed from a job template orjob specification.ac * List parameter defining the name/value pairs that are part of the jobcontext. Default is an empty list.ar Advance reservation identifier used when jobs should be part of anadvance reservation. As default no job will be part of an advancereservation.b yes or no to express if the command should be treated as binary ornot. The default for this parameter is no, i.e. the job is treated as ascript.binding Specifies all core binding specific settings that should be applied to ajob during execution. Binding is disabled as default.CMDARG * Defines a list of command line arguments that will be passed toCMDNAME when the job is executed. As default this list is empty.CMDNAME * Specified either the job script or the command name when binarysubmission is enabled (b yes). Please note that script embedded flagswithin specified job scripts will be ignored.c_interval Defines the time interval when a checkpoint-able job should becheckpointed. The default value is 0.c_occasion Letter combination that defines the state transitions when a jobshould be triggered to write a checkpoint. Default is ‘n’ which willdisable checkpointing.ckpt Checkpoint environment name which specifies how to checkpoint thejob. No checkpoint object will be referenced as default.cwd Specifies the working directory for the job. Path aliasing will not beused when this value is specified in a job class. In case of absence thehome directory of the submitting user will be used as directorywhere the job is executed.dl Specifies the deadline initiation time for a job (see the chapter aboutdeadline urgency in the administrators guide for more information).As default jobs have do defined deadline.e * List parameter that defines the path for the error file for specificexecution hosts. As default the file will be stored in the homedirectory of the submitting user and the filename will be thecombination of the job name and the job id.h yes or no to indicate if a job should be initially in hold state. Thedefault is no.hold_jid * List parameter to create initial job dependencies between new jobsand already existing ones. The default is an empty list.hold_jid_ad * List parameter to create initial array job dependencies between newarray jobs and already existing ones. The default is an empty list.

Grid Engine Users’s Guide v 8.7.0 23

5 Using Job Classes to Prepare Templates for Jobs

Attribute Value specification
i * List parameter that defines the path for the input file for specificexecution hosts.j yes or no to show if error and output stream of the job should bejoined into one file. Default is no.js Defines the job share of a job relative to other jobs. The default is 0.l_hard * List parameter that defines hard resource requirements of a job inthe form of name/value pairs. The default is an empty list.l_soft * List parameter defining soft requests of a job. The default is anempty list.mbind Specifies memory binding specific settings that should be applied toa job during execution. Memory binding is disabled as default.m Character sequence that defines the circumstances when mail that isrelated to the job should be send. The default is ‘n’ which means nomails should be send.M * list parameter defining the mail addresses that will be used to sendjob related mail. The default is an empty list.masterq * List parameter that defines the queues that might be used as masterqueues for parallel jobs. The default is an empty list.N Default name for jobs. For jobs specifying a job script which aresubmitted with qsub or the graphical user interface the default valuewill be the name of the job script. When the script is read from thestdin stream of the submit application then it will be STDIN. qsh andqlogin jobs will set the job name to INTERACTIVE. qrsh jobs will usethe first characters of the command line up to the first occurrence ofa semicolon or space character.notify yes or no to define if warning signals will be send to a jobs if itexceeds any limit. The default is nonow yes or no to specify if created jobs should be immediate jobs. Thedefault is no.o * List parameter that defines the path for the output file for specificexecution hosts.P Specifies the project to which this job is assigned.p Priority value that defines the priority of jobs relative to other jobs.The default priority is 0.pe_name Specifies the name of the parallel environment that will be used forparallel jobs. PE name pattern are not allowed. As default there is noname specified and as a result the job is no parallel job.pe_range Range list specification that defines the amount of slots that arerequired to execute parallel jobs. This parameter must be specifiedwhen also the pe_name parameter is specified.q_hard * List of queues that can be used to execute the job. Queue namepattern are not allowed. The default is an empty list.q_soft * List of queues that are preferred to be used when the job should beexecuted. Queue name pattern are not allowed. The default is anempty list.R yes or no to indicate if a reservation for this job should be done. Thedefault is no.

Grid Engine Users’s Guide v 8.7.0 24

5 Using Job Classes to Prepare Templates for Jobs

Attribute Value specification
r yes or no to identify if the job will be rerun-able. The default is no.S * List parameter that defines the path of the shell for specific executionhosts. The default is an empty list.shell yes or no to specify if a shell should be executed for binary jobs or ifthe binary job should be directly started. The default is yest Defines the task ID range for array jobs. Jobs are no array jobs asdefault.V yes or no. yes causes that all environment variables active during thesubmission of a job will be exported into the environment of the job.v * List of environment variable names and values that will be exportedinto the environment of the job. If also V yes is specified then thevariable values that are active during the submission might beoverwritten.

5.2.4 Example 2: Job Classes - Job Template

Second version of the sleeper job class defining job template attributes for the default vari-ant:
jcname sleeper
variant_list NONE
owner NONE
user_lists NONE
xuser_lists NONE
A UNSPECIFIED
a UNSPECIFIED
ar UNSPECIFIED
b yes
binding UNSPECIFIED
c_interval UNSPECIFIED
c_occasion UNSPECIFIED
CMDNAME /bin/sleep
CMDARG 60
ckpt UNSPECIFIED
ac UNSPECIFIED
cwd UNSPECIFIED
display UNSPECIFIED
dl UNSPECIFIED
e UNSPECIFIED
h UNSPECIFIED
hold_jid UNSPECIFIED
i UNSPECIFIED
j UNSPECIFIED
js UNSPECIFIED
l_hard UNSPECIFIED
l_soft UNSPECIFIED

Grid Engine Users’s Guide v 8.7.0 25

5 Using Job Classes to Prepare Templates for Jobs

m UNSPECIFIED
M UNSPECIFIED
masterq UNSPECIFIED
mbind UNSPECIFIED
N Sleeper
notify UNSPECIFIED
now UNSPECIFIED
o UNSPECIFIED
P UNSPECIFIED
p UNSPECIFIED
pe_name UNSPECIFIED
q_hard UNSPECIFIED
q_soft UNSPECIFIED
R UNSPECIFIED
r UNSPECIFIED
S /bin/sh
shell UNSPECIFIED
V UNSPECIFIED
v UNSPECIFIED

Most of the job template attributes are UNSPECIFIED. As a result the corresponding at-tributes will be ignored and the defaults of the submit client will be used when new jobsare created. When a job is derived from this job class then it will create a job using binarysubmission (b yes) to start the script /bin/sleep (CMDNAME /bin/sleep). 60 will be passed ascommand line argument to this script (CMDARG 60). The name of the job that is created willbe Sleeper (N Sleeper) and the shell /bin/sh will be used to start the command (S /bin/sh).The definition of the sleeper job class is complete. Now it can be used to submit new jobs:
> qsub -jc sleeper
Your job 4097 ("Sleeper") has been submitted

> qsub -S /bin/sh -N Sleeper -b y /bin/sleep
Your job 4098 ("Sleeper") has been submitted

Job 4097 is derived from a job class whereas job 4098 is submitted conventionally. Theparameters specified in the sleeper job class are identical to the command line argumentsthat are passed to qsub command to submit the jobs. As a result both jobs are identical.Both use the same shell and job command and therefore theywill sleep for 60 seconds afterstart. The only difference between the two jobs is the submit time and the job id. Users thattry to change both jobs after they have been submitted will also encounter an additionaldifferences. It is not allowed to change the specification of job 4097. The reason for this isexplained in the next chapter.
5.2.5 Access Specifiers to Allow Deviation

Access specifiers are character sequences that can be added to certain places in job classspecifications to allow/disallow operations that can be applied to jobs that are derived from
Grid Engine Users’s Guide v 8.7.0 26

5 Using Job Classes to Prepare Templates for Jobs

that job class. They allow you to express, for instance, that job options defined in the jobsclass can be modified, deleted or augmented when submitting a job derived from a jobclass. This means the job class owner can control how the job class can be used by regularusers being allowed to derive jobs from this job class. This makes using job classes simplefor the end user (because of a restricted set of modifications). It also avoids errors as wellas the need to utilize Job Submission Verifiers for checking on mandatory options.
By default, if no access specifiers are used, all valueswithin job classes are fixed. Thismeansthat jobs that are derived from a job class cannot be changed. Any attempt to adjust a jobduring the submission or any try to change a job after it has been submitted (e.g. with qalter)will be rejected. Also managers are not allowed to change the specification of defined in ajob class when submitting a job derived from the job class.
To soften this restriction, job class owners and users having the manager role in a job classcan add access specifiers to the specification of a job class to allow deviation at certainplaces. Access specifiers might appear before each value of a job template attribute andbefore each entry in a list of key or key/value pairs. The preceding access specifier defineswhich operations are allowed with the value that follows.
The full syntax for a job class template attribute is defined as <jc_templ_attr>:
<jc_templ_attr> := <templ_attr> | <list_templ_attr>
<templ_attr> := <attr_name> “ “ <attr_access_specifier>(<attr_value>|"UNSPECIFIED")
<list_templ_attr> := <list_attr_name> “ “ <attr_access_specifier> <list_attr_value>
<list_attr_value> := <access_specifier> ((<list_entry> [“,” <access_specifier>

<list_entry>, ...]) | "UNSPECIFIED")
<attr_access_specifier> := <access_specifier>

Please note the distinction between <attr_access_specifier> and <access_specifier>.<attr_access_specifier> is also an <access_specifier> but it is the first one that appears inthe definition of list based job template attributes and it is the reason why two accessspecifiers might appear one after another. The first access specifier regulates access tothe list itself whereas the following ones define access rules for the entries in the list theyare preceding. These access specifiers (<access_specifier>) are available:
Table 11: Available Access Specifiers

Access Specifier Description
The absence of an access specifier indicates that thecorresponding template attribute (or sublist entry) is fixed.Any attempt to modify or delete a specified value or anyattempt to add a value where the keyword UNSPECIFIED wasused will be rejected. It is also not allowed to add additionalentries to lists of list based attributes if a list is fixed.

{-} Values that are tagged with the {-} access specifier areremovable. If this access specifier is used within list basedattributes then removal is only allowed if the list itself is alsomodifiable. If all list entries of a list are removable then alsothe list itself must be removable so that the operation will besuccessful.
Grid Engine Users’s Guide v 8.7.0 27

5 Using Job Classes to Prepare Templates for Jobs

Access Specifier Description
{~} Values that are prefixed with the {~} access specifier can bechanged. If this access specifier is used within list basedattributes then the list itself must also be modifiable.
{~-} or {-~} The combination of the {-} and {~} access specifiers indicatesthat the value it precedes is modifiable and removable.
{+}UNSPECIFIED or
{+. . . }

The {+} access specifier can only appear in combination withthe keyword UNSPECIFIED or before list attribute values butnot within access specifiers preceding list entries. If itappears before list attribute values it can also be combinedwith the {~} and {-} access specifiers. This access specifierindicates that something can be added to the specification ofa job after it has been submitted. For list based attributes itallows that new list entries can be added to the list.

5.2.6 Example 3: Job Classes - Access Specifiers

Here follows the third refinement of the sleeper job class giving its users more flexibility:
jcname sleeper
variant_list NONE
owner NONE
user_lists NONE
xuser_lists NONE
A UNSPECIFIED
a UNSPECIFIED
ar UNSPECIFIED
b yes
binding UNSPECIFIED
c_interval UNSPECIFIED
c_occasion UNSPECIFIED
CMDNAME /bin/sleep
CMDARG 60
ckpt UNSPECIFIED
ac UNSPECIFIED
cwd UNSPECIFIED
display UNSPECIFIED
dl UNSPECIFIED
e UNSPECIFIED
h UNSPECIFIED
hold_jid UNSPECIFIED
i UNSPECIFIED
j UNSPECIFIED
js UNSPECIFIED
l_hard {~+}{~}a=true,b=true,{-}c=true
l_soft {+}UNSPECIFIED
m UNSPECIFIED

Grid Engine Users’s Guide v 8.7.0 28

5 Using Job Classes to Prepare Templates for Jobs

M UNSPECIFIED
masterq UNSPECIFIED
mbind UNSPECIFIED
N {~-}Sleeper
notify UNSPECIFIED
now UNSPECIFIED
o UNSPECIFIED
P UNSPECIFIED
p UNSPECIFIED
pe_name UNSPECIFIED
q_hard UNSPECIFIED
q_soft UNSPECIFIED
R UNSPECIFIED
r UNSPECIFIED
S /bin/sh
shell UNSPECIFIED
V UNSPECIFIED
v UNSPECIFIED

Now it is allowed to modify or remove the name of sleeper jobs (N {~-}Sleeper).Users deriving jobs from this class are allowed to add soft resource requests (l_soft
{+}UNSPECIFIED). New hard resource requests can be added and the ones which arespecified within the job class can be adjusted (l_hard {~+}...) but there are ad-ditional restrictions: The access specifiers preceding the resource requests (l_hard
...{~}a=true,b=true,{-}c=true) allow the modification of the resource a, the deletionof the resource c whereas the value of resource b is fixed (no access specifier). Users thattry to submit or modify jobs that would violate one of the access specifiers will receive anerror message and the request is rejected.
Here are some examples for commands that will be successful:
> qsub -jc sleeper -N MySleeperName
> qsub -jc sleeper -soft -l new=true
> qsub -jc sleeper -l a=false,b=true,new=true

Here you can see some commands that will be rejected:
> qsub -jc sleeper /path/to/my_own_sleeper (CMDNAME is not modifiable)
> qsub -jc sleeper -l a=false,b=false,new=true (l_hard has requested resource b=true.

This cannot be changed)
> qsub -jc sleeper -S /bin/tcsh (S job template attribute does not allow to modify

the shell)

5.2.7 Different Variants of the same Job Class

Job classes represent an application type in a cluster. If the same application should bestarted with various different settings or if the possible resource selection applied by the

Grid Engine Users’s Guide v 8.7.0 29

5 Using Job Classes to Prepare Templates for Jobs

Altair Grid Engine system should depend on the mode how the application should be exe-cuted then it is possible to define one job class with multiple variants. So think of it as a wayto use the same template for very similar types of jobs, yet with small variations. The vari-ant_list job class attribute defines the names of all existing job class variants. If the keywordNONE is used or when the list contains only the word default then the job class has only onevariant. If multiple names are listed here, separated by commas, then the job class will havemultiple variants. The default variant always has to exist. If the variant_list attribute doesnot contain the word default then it will be automatically added by the Altair Grid Enginesystem upon creating the job class.
Attribute settings for the additional job class variants are specified similar to the attributesettings of queue instances or queue domains of cluster queues. The setting for a variantattribute has to be preceded by the variant name followed by an equal character (“=”) andenclosed in brackets (“[“ and “]”).
The position where access specifiers have to appear is slightly different in this case. Thenext example will show this (see the l_soft and N attributes).
5.2.8 Example 4: Job Classes - Multiple Variants

The following example shows the excerpt of the sleeper job class with three different vari-ants
jcname sleeper
variant_list default,short,long
owner NONE
user_lists NONE
xuser_lists NONE
A UNSPECIFIED
a UNSPECIFIED
ar UNSPECIFIED
b yes
binding UNSPECIFIED
c_interval UNSPECIFIED
c_occasion UNSPECIFIED
CMDNAME /bin/sleep
CMDARG 60,[short=5],[long=3600]
ckpt UNSPECIFIED
ac UNSPECIFIED
cwd UNSPECIFIED
display UNSPECIFIED
dl UNSPECIFIED
e UNSPECIFIED
h UNSPECIFIED
hold_jid UNSPECIFIED
i UNSPECIFIED
j UNSPECIFIED
js UNSPECIFIED
l_hard {~+}{~}a=true,b=true,{-}c=true

Grid Engine Users’s Guide v 8.7.0 30

5 Using Job Classes to Prepare Templates for Jobs

l_soft {+}UNSPECIFIED,[{~+}long={~}d=true]
m UNSPECIFIED
M UNSPECIFIED
masterq UNSPECIFIED
mbind UNSPECIFIED
N {~-}Sleeper,[{~-}short=ShortSleeper],[long=LongSleeper]
notify UNSPECIFIED
now UNSPECIFIED
o UNSPECIFIED
P UNSPECIFIED
p UNSPECIFIED
pe_name UNSPECIFIED
q_hard UNSPECIFIED
q_soft UNSPECIFIED
R UNSPECIFIED
r UNSPECIFIED
S /bin/sh
shell UNSPECIFIED
V UNSPECIFIED
v UNSPECIFIED

The sleeper job class has now three different variants (variant_list default,short,long). Toreference a specific job class variant the name of the job class has to be combined with thename of the variant. Both names have to be separated by a dot (“.”). If the variant name isomitted then automatically the default variant is referenced.
> qsub -jc sleeper
Your job 4099 ("Sleeper") has been submitted

> qsub -jc sleeper.short
Your job 4100 ("ShortSleeper") has been submitted

> qsub -jc sleeper.long
Your job 4101 ("LongSleeper") has been submitted

The returned message from the submit commands already indicates that there aredifferences between the three jobs. The jobs have different names. Compared tothe other jobs, the job 4101 has an additional soft resource request d=true (l_soft
...,[{~+}long={~}d=true]). Job 4100 that was derived from the sleeper.short job classvariant has no soft requests. Nothing was explicitly specified here for this variant andtherefore it will implicitly use the setting of the sleeper.default job class variant (l_soft
{+}UNSPECIFIED,...). Moreover, the job name (see the N attribute) can be modified orremoved for the default and short variant but is fixed for the long variant.
5.2.9 Enforcing Cluster Wide Requests with the Template Job Class

After a default installation of Altair Grid Engine 8.7.0 there exists one job classwith the name
template. This job class has a special meaning and it cannot be used to create new jobs. Its
Grid Engine Users’s Guide v 8.7.0 31

5 Using Job Classes to Prepare Templates for Jobs

configuration can only be adjusted by users having the manager role. This jobs class actsas parent job class for all other job classes that are created in the system.
The values of job template attributes in this template job class and the corresponding accessspecifiers restrict the allowed settings of all corresponding job template attributes of otherjob classes. As default the {+}UNSPECIFIED add access specifier and keyword is used in thetemplate job class in combination with all job template attributes. Due to that any settingis allowed to other job class attributes after Altair Grid Engine 8.7.0 has been installed.
This parent-child relationship is especially useful when all jobs that are submitted into acluster are derived from job classes. Managers might then change the settings within thetemplate. All other existing job classes that violate the settings will then switch into theconfiguration conflict state. The owners of those job classes have to adjust the settingsbefore new jobs can be derived from them. All those users that intend to create a new jobclass that violates the settings of the template job class will receive an error.
You will also want to use the template job class to enforce restrictions on the access spec-ifiers which can be used in job classes. Since any job class, whether create by a manageraccount or by regular users, is derived from the template job class those derived job classesare bound to stay within the limits defined by the template job class. So parameters whichhave been defined as fixed in the template job class, for instance, cannot bemodified in anyjob class created by amanager or user. Likewise, parameters which have a preset value butare configured to allow deletion only cannot be modified in derived job classes. The follow-ing table shows the allowed transitions:

Table 12: Allowed Access Specifier Transitions
Access Specifier in Template JC Allowed Access Specifier in Child JC
.UNSPECIFIED UNSPECIFIED{~}. . . {~}.{-}. . . {-}. . .{~}. . .UNSPECIFIED. . .{-~}. . . {-~}. . .{-}. . .{~}. . .UNSPECIFIED. . .{+}. . . {+}. . .{-~}. . .{-}. . .{~}. . .UNSPECIFIED. . .

Grid Engine Users’s Guide v 8.7.0 32

5 Using Job Classes to Prepare Templates for Jobs

5.3 Relationship Between Job Classes and Other Objects

To fully integrate job classes into the already existing Altair Grid Engine system the possibil-ity is provided to create new relations between current object types (like queues, resourcequotas, JSV) and job classes.
5.3.1 Resources Available for Job Classes

The profile of a job is defined by the resource requirements and other job attributes.Queues and host objects define possible execution environments where jobs can beexecuted. When a job is eligible for execution then the scheduler component of the AltairGrid Engine system tries to find the execution environment that fits best according to alljob specific attributes and the configured policies so that this job can be executed.
This decision making process can be difficult and time consuming especially when certainjobs having special resource requirements should only be allowed to run in a subset ofthe available execution environments. The use of job classes might help here because jobclasses will give the scheduler additional information on which execution environmentswill or will not fit for a job. The need to evaluate all the details about available resourcesof an execution environment and about the job’s requirements will be reduced or can becompletely eliminated during the decision making process.
This is achieved by an additional parameter in the queue configuration which provides adirect association between queues and one ormultiple job classes. This parameter is called
jc_list andmight be set to the valueNONEor a list of job classes or job class variant names.If a list of names is specified then the special keyword ANY_JC and/or NO_JCmight be usedwithin the list to filter all those jobs that are in principle allowed to run in this queues. Thefollowing combinations are useful:

Value Description

NONE No job may enter the queue.
ANY_JC Jobs may enter the queue that were derived from a job class.
NO_JC Only jobs may enter the queue that were not derived from a job class.
ANY_JC, NO_JC Any job, independent if it was derived from a job class or not, may be exe-cuted in the queue. This is the default for any queue that is created in a cluster.
<list of JC names> Only those jobsmay get scheduled in the queue if they were derived fromone of the enlisted job classes. NO_JC,<list of JC names> Only those jobs that were not derived from a job class or those that werederived from one of the enlisted job classes can be executed here. —————————————————————————————-
: Useful Values for the jc_list Attribute of a Queue
This relationship helps the scheduler during the decision making to eliminate queues earlywithout the need to further look at all the details like resource requirements. Managers ofGrid Engine Clusters may want to take care that there is at least one queue in the cluster

Grid Engine Users’s Guide v 8.7.0 33

5 Using Job Classes to Prepare Templates for Jobs

available that use the ANY_JC keyword. Otherwise jobs of users who have defined their ownjob class will not get cluster resources. Also at least one queue using the NO_JC keywordmay need to be available. Otherwise conventionally submitted jobs will not get scheduled.
5.3.2 Defining Job Class Limits

Resource quota sets can be defined to influence the resource selection in the scheduler.The jcs filter within a resource quota rule may contain a comma separated list of job classnames. This parameter filters for jobs requesting a job class in the list. Any job class notin the list will not be considered for the resource quota rule. If no jcs filter is used, all jobclasses and jobs with no job class specification match the rule. To exclude a job class fromthe rule, the name can be prefixed with the exclamation mark (!). ‘!*’ means only jobs withno job class specification.
Example: Resource Quota Set Using a Job Class Filter

`name max_virtual_free_on_lx_hosts_for_app_1_2`

`description "quota for virtual_free restriction"`

`enabled true`

`limit users {user1,user2} hosts {@lx_host} jcs {app1, app2} to vf=6G`

`limit users {*} hosts {@lx_host} jcs {other_app, !*} to vf=4G`

The example above restricts user1 and user2 to 6G virtual_free memory for all jobs de-rived from of job class app1 or app2 on each Linux host part of the @lx_hosts host group. Allusers that either do not derive from a job class or request the job class named other_appwill have a limit of 4G.
5.3.3 JSV and Job Class Interaction

During the submission of a job multiple Job Submission Verifiers can be involved that verifyand possibly correct or reject a job. With conventional job submission (without job classes)each JSV will see the job specification of a job that was specified at the command line viaswitches and passed parameters or it will see the job parameters that were chosen withinthe dialog of the GUI.
When Jobs are derived from a job class then the process of evaluation via JSV scripts is thesame but the job parameters that are visible in client JSVs are different. A client JSV will onlysee the requested job class via a parameter named jc and it will see all those parametersthat were specified at the command line. All parameters that are defined in the job classitself cannot be seen.
Job classes will be resolved within the sge_qmaster process as soon as a request is receivedthat tries to submit a job that should be derived from a job class. The following steps aretaken (simplified process):
Grid Engine Users’s Guide v 8.7.0 34

5 Using Job Classes to Prepare Templates for Jobs

1) Create a new job structure

2) Fill job structure with defaults values

3) Fill job structure with values defined in the job class
(This might overwrite default values)

4) Fill job structure with values defined at the command line
(This might overwrite default values and values that were defined in the job class)

5) Trigger server JSV to verify and possibly adjust the job
(This might overwrite default values, JC values and values specified at the command line)

6) Check if the job structure violates access specifiers

If the server JSV changes the jc parameter of the job in step 5 then the submission processrestarts from step 1 using the new job class for step 3.
Please note that the violation of the access specifiers is checked in the last step. As result aserver JSV is also not allowed to apply modifications to the job that would violate any accessspecifiers defined in the job class specification.
5.4 Commands to Adjust Job Classes

5.4.1 Creating, Modifying and Deleting Job Classes

Job Classes can be created, modified or deleted with the following commands.
• qconf -ajc <jcname>

This is the command to add a new job class object. It opens an editor and shows the defaultparameters for a job class. After changing, saving necessary values and closing the editor,a new job class is created.
• qconf -Ajc <filename>

Adds a new job class object with its specification being stored in the specified file.
• qconf -djc <jcname>

Deletes a job class object with the given name.
• qconf -mjc <jcname>

Opens an editor and shows the current specification of the job classwith the name <jcname>.After changing attributes, saving themodifications and closing the editor, the object is mod-ified accordingly.

Grid Engine Users’s Guide v 8.7.0 35

5 Using Job Classes to Prepare Templates for Jobs

The qconf commands that open an editor are not supported on Windows hosts. Instead,redirect the output of the corresponding qconf -s... command to a file, edit it there andapply the changes using qconf -M..., or simply use a UNIX host.

Note

• qconf -Mjc <filename>

Modifies a job class object from file.
• qconf -sjc <jcname>

Shows the current specification of the job class with the name <jcname>.
• qconf -sjcl

Shows all names of existing job class objects that exist in a cluster.
5.4.2 States of Job Classes

Job Classes have a combined state that is the result of following the sub states: en-
abled/disabled, no conflict/configuration conflict

Grid Engine Users’s Guide v 8.7.0 36

5 Using Job Classes to Prepare Templates for Jobs

The enabled/disabled state is a manual state. A state change from enabled to disabled canbe triggered with the qmod -djc <jcname> command. The command qmod -ejc <jcname>command can be used to trigger a state change from disabled to enabled. Job Classes inthe disabled state cannot be used to create new jobs.
The no conflict/configuration conflict state is an automatic state that cannot be changedman-ually. Job classes that do not violate the configuration of the template job class are in the no
conflict state. A job class in this state can be used to create new jobs (if it is also in enabledstate). If the template job class or a derived job class is changed so that either a configu-ration setting or one of the access specifiers of the template job class is violated then thederived job class will automatically switch from the no conflict into the configuration
conflict state. This state will also be left automatically when the violation is eliminated.

5.5 Using Job Classes to Submit New Jobs

Job Classes that are in the enabled and no conflict state can be used to create new jobs.To do this a user has to pass the -jc switch in combination with the name of a job classto a submit command like qsub. If the user has access to this job class then a new job willbe created and all job template attributes that are defined in the job class will be used toinitialize the corresponding parameters in the submitted job.
Depending on the access specifiers that are used in the job class it might be allowed toadjust certain parameters during the submission of the job. In this case additional switchesand parameters might be passed to the submit command. All these additionally passedparameters will be used to adjust job parameters that where derived from the job class.
Additionally to the typical switches that are used to define job parameters there is a set ofswitches available that allow to remove parameters or to adjust parts of list based parame-ters in a job specification. The same set of switches can also be used with the modificationcommand qalter to adjust job parameters after a job has already been created.

• qsub/qalter -clearp <attr_name>

The -clearp switch allows to remove a job parameter from the specification of a job as if itwas never specified. What this means depends on the job parameter that is specified by<attr_name>. For all those attributes that would normally have a default value this defaultvalue will be set for all others the corresponding attribute will be empty. Parameter namesthat can be specified for <attr_name> are all the ones that are specified in the table aboveshowing job template attribute names.
• qsub/qalter -clears <list_attr_name> <key>

This switch allows to remove a list entry in a list based attribute of a job specification.<list_attr_name> might be any name of a job template attribute that is tagged with the as-terisk (*) in the table above. <key> has to be the name of the key of the sublist entry forkey/value pairs or the value itself that should be removed when the list contains only values
• qsub/qalter -adds <list_attr_name> <key> <value>

Grid Engine Users’s Guide v 8.7.0 37

5 Using Job Classes to Prepare Templates for Jobs

-adds adds a new entry to a list based parameter.
• qsub/qalter -mods <list_attr_name> <key> <value>

The -mods switch allows to modify the value of a key/value pair within a list based job pa-rameter.
5.6 Example: Submit a Job Class Job and Adjust Some Parameters

Assume that the following job class is defined in you cluster:
jcname sleeper
variant_list default,short,long
owner NONE
user_lists NONE
xuser_lists NONE
A UNSPECIFIED
a UNSPECIFIED
ar UNSPECIFIED
b yes
binding UNSPECIFIED
c_interval UNSPECIFIED
c_occasion UNSPECIFIED
CMDNAME /bin/sleep
CMDARG 60,[short=5],[long=3600]
ckpt UNSPECIFIED
ac UNSPECIFIED
cwd UNSPECIFIED
display UNSPECIFIED
dl UNSPECIFIED
e UNSPECIFIED
h UNSPECIFIED
hold_jid UNSPECIFIED
i UNSPECIFIED
j UNSPECIFIED
js UNSPECIFIED
l_hard {~+}{~}a=true,b=true,{-}c=true
l_soft {+}UNSPECIFIED,[{~+}long={~}d=true]
m UNSPECIFIED
M UNSPECIFIED
masterq UNSPECIFIED
mbind UNSPECIFIED
N {~-}Sleeper,[{~-}short=ShortSleeper],[{~-}long=LongSleeper]
notify UNSPECIFIED
now UNSPECIFIED
o UNSPECIFIED
P UNSPECIFIED
p UNSPECIFIED

Grid Engine Users’s Guide v 8.7.0 38

5 Using Job Classes to Prepare Templates for Jobs

pe_name UNSPECIFIED
q_hard UNSPECIFIED
q_soft UNSPECIFIED
R UNSPECIFIED
r UNSPECIFIED
S /bin/sh
shell UNSPECIFIED
V UNSPECIFIED
v UNSPECIFIED

Now it is possible to submit jobs and to adjust the parameters of those jobs during thesubmission to fit specific needs:
1) qsub -jc sleeper -N MySleeper
2) qsub -jc sleeper.short -clearp N
3) qsub -jc sleeper.short -clears l_hard c -adds l_hard h_vmem 5G
4) qsub -jc sleeper.long -soft -l res_x=3

The first job that is submitted (1) will be derived from the sleeper.default job class variantbut this job will get the name MySleeper.
Job (2) uses the sleeper.short job class but the job name is adjusted. The -clearp switchwill remove the job name that is specified in the job class. Instead it will get the default jobname that would have been assigned without specifying the name in any explicit way. Thiswill be derived from the last part of the script command that will be executed. This script is
/bin/sleep. So the job name of the new job will be sleep.
When job (3) is created the list of hard resource requirements is adjusted. The resourcerequest c is removed and the h_vmem=5G resource request is added.
During the submission of job (4) The list of soft resource request is completely redefined.The use of the -lwill completely replace already defined soft resource requests if any havebeen defined.
Please note that it is not allowed to trigger operations that would violate any access speci-fiers. In consequence, the following commands would be rejected:
5) qsub -jc sleeper -hard -l res_x 3 (This would remove the a and b resource requests)
6) qsub -jc sleeper /bin/my_sleeper 61 (Neither CMDNAME nor the CMDARGs are modifiable)

5.7 Status of Job Classes and Corresponding Jobs

The -fjc switch of the qstat command can be used to display all existing job classes andjobs that have been derived from them.
> qstat -fjc
job class O U states

sleeper.default X

Grid Engine Users’s Guide v 8.7.0 39

6 Monitoring and Controlling Jobs

42145 0.55500 Sleeper user r 05/15/2012 15:30:47 1
42146 0.55500 Sleeper user r 05/15/2012 15:30:47 1
42147 0.55500 Sleeper user r 05/15/2012 15:30:47 1
42148 0.55500 Sleeper user r 05/15/2012 15:30:47 1

sleeper.long X d

sleeper.short X
42149 0.55500 ShortSleep user r 05/15/2012 15:30:57 1
42150 0.55500 ShortSleep user r 05/15/2012 15:30:57 1
42151 0.55500 ShortSleep user r 05/15/2012 15:30:57 1

template.default

The O column shows if the user executing the qstat command is the owner of the job classand the U-column is tagged with an X if the corresponding job class can be used by thatuser to derive new jobs.
The states column will show the character d if the corresponding job class variant is indisabled state and a c if the class is in the configuration conflict state. In all other cases thecolumn will be empty. This indicates that the job class variant can be used to create a newjob.

6 Monitoring and Controlling Jobs

6.1 Getting Status Information on Jobs

The command line tool qstat delivers all the available status information for jobs. qstatsupplies various possibilities to present the available information.
Table 14: The Most Common Ways to Use qstat

Command Description
qstat Without options, qstat lists all jobs but without any queue statusinformation.
qstat -f The -f option causes qstat to display a summary information ofall cause including its load accompanied by the list of all queuedas also all pending jobs.
qstat -ext The -ext option causes qstat to displays usage information andthe ticket consumption of each job.
qstat -j <job_id> The -j option causes qstat to display detailed information of acurrently queued job.

Examples:
qstat

Grid Engine Users’s Guide v 8.7.0 40

6 Monitoring and Controlling Jobs

job-ID prior name user state submit/start at queue slots ja-task-ID

4 0.55500 job1 user1 r 04/28/2011 09:35:34 all.q@host1 1
5 0.55500 job2 user1 r 04/28/2011 09:35:34 all.q@host2 1
6 0.55500 job3 user1 r 04/28/2011 09:35:34 all.q@host2 1

qstat -f
queuename qtype resv/used/tot. load_avg arch states

all.q@host1 BIPC 0/3/10 0.04 lx-amd64
16 0.55500 Sleeper user1 r 04/28/2011 09:36:44 1
18 0.55500 Sleeper user1 r 04/28/2011 09:36:44 1
23 0.55500 Sleeper user1 r 04/28/2011 09:36:44 1

all.q@host2 BIPC 0/3/10 0.04 lx-x86
15 0.55500 Sleeper user1 r 04/28/2011 09:36:44 1
19 0.55500 Sleeper user1 r 04/28/2011 09:36:44 1
22 0.55500 Sleeper user1 r 04/28/2011 09:36:44 1

all.q@host3 BIPC 0/3/10 0.04 sol-amd64
14 0.55500 Sleeper user1 r 04/28/2011 09:36:44 1
17 0.55500 Sleeper user1 r 04/28/2011 09:36:44 1
21 0.55500 Sleeper user1 t 04/28/2011 09:36:44 1

all.q@host4 BIPC 0/3/10 1.35 lx-amd64
20 0.55500 Sleeper user1 r 04/28/2011 09:36:44 1
24 0.55500 Sleeper user1 r 04/28/2011 09:36:44 1
25 0.55500 Sleeper user1 r 04/28/2011 09:36:44 1

It is also possible to be informed by the Altair Grid Engine system via mail on the statuschange of a job. To use this feature it necessary to set the -m option while submitting thejob. This option is available for qsub, qsh, qrsh, qlogin and qalter.
Table 15: Mail Options to Monitor Jobs

Option Description
b Send mail at the beginning of a job.e Send mail at the end of a job.a Send mail when job is aborted or rescheduled.s Send mail when job is suspended.n Send no mail (default).

Example: Altair Grid Engine will send mail at the beginning as well as the end of the job:
qsub -m be test_job.sh

Grid Engine Users’s Guide v 8.7.0 41

6 Monitoring and Controlling Jobs

6.2 Deleting a Job

To delete a job, the qdel binary is used.
Table 16: Optional qdel Parameters

Parameter Description
-f <job_id[s]> Forces the deletion a job even if the responsible executionhost does not respond.<job_id> -t <range> Deletes specific tasks of an array job. It is also possible todelete a specific range of array jobs.-u <user_list> Deletes all job of the specified user.

The behavior of how Altair Grid Engine handles a forced deletion can be altered by us-ing the following qmaster parameters. This option can be set via qconf -mconf as qmas-
ter_params.

Table 17: qmaster Parameters for Forced Job Deletion
Parameter Description
ENABLE_FORCED_QDEL If this parameter is set, users are allowed toforce job deletion on their own jobs.Otherwise only the Altair Grid Enginemanagers are allowed to perform thoseactions.ENABLE_FORCED_QDEL_IF_UNKNOWN If this parameter is set, qdel <job_id> willautomatically invoke a forced job deletion ifthe host, where the job is running, is ofunknown status.

Examples:
Delete all jobs in the cluster (only possible for Altair Grid Engine managers):
qdel -u "*"

Delete tasks 2-10 out of array job with the id 5:
qdel 5 -t 2-10

Forced deletion of jobs 2 and 5:
qdel -f 2 5

Grid Engine Users’s Guide v 8.7.0 42

6 Monitoring and Controlling Jobs

6.3 Re-queuing a Job

A job can be rescheduled only if its rerun flag is set. This can be done either at time ofsubmission via the -r option of qsub, or belatedly via the -r option of qalter as well asvia the rerun configuration parameter for queues. This rerun configuration can be set with
qconf -mq <queue_name>.
Examples:
qsub -r yes <job_script>
qalter -r yes <job_id>

There are two different ways to reschedule jobs.
Examples:
Reschedule a job:
qmod -rj <job_id[s]>

Reschedule all jobs in a queue:
qmod -rq <queue|queue_instance>

Rescheduled jobs are designated Rr (e.g. shown by qstat).
Example:
qstat -f
queuename qtype resv/used/tot. load_avg arch states

all.q@host1 BIPC 0/2/10 0.01 lx-amd64

53 0.55500 Sleeper user1 Rr 05/02/2011 15:31:10 2

all.q@host2 BIPC 0/2/10 0.01 lx-x86

53 0.55500 Sleeper user1 Rr 05/02/2011 15:31:10 2

all.q@host3 BIPC 0/1/10 0.03 sol-amd64

53 0.55500 Sleeper user1 Rr 05/02/2011 15:31:10 1

all.q@host4 BIPC 0/0/10 0.06 lx-amd64

6.4 Modifying a Waiting Job

To change attributes of a pending job qalter is used.
qalter is able to change most of the characteristics of a job even those which were set asembedded flags in the script files. Consult the submit(1)main page in regards to the optionsthat can be altered (e.g. the job script).
Grid Engine Users’s Guide v 8.7.0 43

6 Monitoring and Controlling Jobs

6.4.1 Altering Job Requirements

It is also possible to alter the requirements of a pending job which have been defined viathe -l flag at time or submission.
Example:
Submit a job to host1
qsub -l h=host1 script.sh

Alter the host-requirement of this job (with the assumed job-id 45) to host2
qalter -l h=host2 45

By altering requested requirements the with -l, keep in mind that the requirements be-come the new requirements thus the requirements which do not require changemust bere-requested.

Note

Example:
Submit a job with the requirement to run on host1 and and on queue2:
qsub -l h=host1,q=queue2 script.sh

Alter the host-requirement of this job (with the assumed job-id 45) to host5 and re-requestqueue2 as requirement
qalter -l h=host5,q=queue2 45

If queue2 is NOT stated in the qalter-call, the job will run on any available queue in host5.
6.5 Changing Job Priority

To change the priority of a job the -p option of qalter can be used. It is possible to alter thepriority within the range between -1023 and 1024 whereas a negative number decreasespriority and a positive one to increases it. If not submitted differently, the default priorityis 0. As previously mentioned, a user can only alter his own jobs and in this case, a useris only able to decrease the priority of a job. To increase the priority, the user needs to beeither Altair Grid Engine administrator or Altair Grid Engine manager.
Examples:
Increase the job priority of job 45:
qalter -p 5 45

Decrease the job priority of 45:
qalter -p -5 45

Grid Engine Users’s Guide v 8.7.0 44

6 Monitoring and Controlling Jobs

6.6 Obtaining the Job History

To get the history of a job and its accounting information use qacct.
qacct parses the accounting file written by qmaster and lists all available information for agiven job. This includes accounting data such as wall-clock time, cpu-time or memory con-sumption as also the host where job ran and e.g. the exit-status of the job script. The defaultAltair Grid Engine accounting file resists in <sge_root>/<cell>/common/accounting. See ac-
counting(5) for more information e.g. how the file is composed and what information isstored in it.
Example: Show the accounting information of job 65:
qacct -j 65
==
qname all.q
hostname host1
group users
owner user1
project NONE
department defaultdepartment
jobname Sleeper
jobnumber 65
taskid undefined
account sge
priority 0
qsub_time Mon May 9 14:27:32 2011
start_time Mon May 9 14:27:35 2011
end_time Mon May 9 14:28:20 2011
granted_pe mytestpe
slots 5
failed 0
exit_status 0
ru_wallclock 45
ru_utime 0.026
ru_stime 0.019
ru_maxrss 1856
ru_ixrss 0
ru_ismrss 0
ru_idrss 0
ru_isrss 0
ru_minflt 10649
ru_majflt 0
ru_nswap 0
ru_inblock 0
ru_oublock 24
ru_msgsnd 0
ru_msgrcv 0
ru_nsignals 0
ru_nvcsw 101

Grid Engine Users’s Guide v 8.7.0 45

7 Other Job Types

ru_nivcsw 26
cpu 0.045
mem 0.000
io 0.000
iow 0.000
maxvmem 17.949M
arid undefined

7 Other Job Types

7.1 Array Jobs

Array jobs are, as mentioned in Types of Workloads being Managed by Altair Grid Engine,those that start a batch job or a parallel job multiple times. Those simultaneously-run jobsare called tasks. Each job receives an unique ID necessary to identify each of them anddistribute the workload over the array job.
Submit an array job:
Thedefault output- and error-files are job_name.[o|e]job_id and job_name.[o|e]job_id.task_id.This means that Altair Grid Engine creates an output- and an error-file for each task plusone for the super-ordinate array-job. To alter this behavior use the -o and -e option ofqsub. If the redirection options of qsub are use (-o and/or -e), the results of the individualwill be merged into the defined one.

Table 18: Available Pseudo Environment Variables
Pseudo env variable Description
$USER User name of the submitting user$HOME Home directory of the submitting user$JOB_ID ID of the job$JOB_NAME Name of the job$HOSTNAME Hostname of the execution host$SGE_TASK_ID ID of the array task

The -t option of qsub indicates the job as an array job. The -t option has the following syntax:
qsub -t n[-m[:s]] <batch_script>

-t Option Syntax

• n - indicates the start-id.
• m - indicates the max-id.
• s - indicates the step size.

Grid Engine Users’s Guide v 8.7.0 46

7 Other Job Types

Examples:

qsub -t 10 array.sh - submits a job with 1 task where the task-id is 10.
qsub -t 1-10 array.sh - submits a job with 10 tasks numbered consecutively from 1 to 10.
qsub -t 2-10:2 array.sh - submits a jobs with 5 tasks numbered consecutively with step size2 (task-ids 2,4,6,8,10).
Besides the pseudo environment variables already mentioned, the following variables arealso exposed which can be used in the script file:

Table 19: Pseudo Environment Variables Available for Scripts
Pseudo env variable Description
$SGE_TASK_ID ID of the array task$SGE_TASK_FIRST ID of the first array task$SGE_TASK_LAST ID of the last array task$SGE_TASK_STEPSIZE step size

Example of an array job script:
#!/bin/sh

redirect the output-file of the batch job
#$ -o /tmp/array_out.$JOB_ID
redirect the error-file of the batch job
#$ -e /tmp/array_err.$JOB_ID

starts data_handler with data.* as input file
/tmp/data_handler -i /tmp/data.$SGE_TASK_ID

Alter an array job:

It is possible to change the attributes of array jobs. But the changes will only affect thepending tasks of an array job. Already running tasks are untouched.
Array job concurrency

The maximum number of concurrently running tasks of an array job can be limited via the-tc switch of qsub (see -tc in submit(1)).
So called concurrent array jobs are jobs where either all tasks can be started in one schedul-ing interval or no task is started at all (the whole job stays pending). A concurrent array jobis submitted using the -tcon switch of qsub (see -tcon in submit(1)). Immediate concurrentarray jobs (qsub -tcon y -now y) will be rejected if not all tasks can be started immediately.
Configuration variables (see sge_conf(5)):

• max_aj_instances indicates the maximum number of instances of an array job whichcan run simultaneously.

Grid Engine Users’s Guide v 8.7.0 47

7 Other Job Types

• max_aj_tasks indicates the maximum number of tasks a array job can have.
• qmaster_params MIN_PENDING_ENROLLED_TASKS can be used to define for how manypending array tasks individual per task tickets are calculated per job by the Altair GridEngine policy engine.
• qmaster_params MAX_TCON_TASKS is used to limit the number of tasks a concurrentarray job can have, value 0 (default) disables concurrent array jobs.

Example:

Submit a job with 20 tasks but only 10 of then can run concurrently. qsub -t 1-20 -tc 10array.sh

7.2 Interactive Jobs

Usually, Altair Grid Engine uses its own built-in mechanism to establish a connection to theexecution host. It is possible to change this to e.g. ssh or telnet, of course.
Configuration variable Description
qlogin_command Command to execute on local host if qlogin is started.qlogin_daemon Daemon to start on execution host if qlogin is started.rlogin_command Command to execute on local host if qrsh is started withouta command name as argument to execute remotely.rlogin_daemon Daemon to start on execution host if qrsh is started withouta command name as argument to execute remotely.rsh_command Command to execute on local host if qrsh is started with acommand name as argument to execute remotely.rsh_daemon Daemon to start on execution host if qrsh is started with acommand name as argument to execute remotely.

Example of a qlogin configuration:
qlogin_command /usr/bin/telnet
qlogin_daemon /usr/sbin/in.telnetd

The configured commands (qlogin_command, rlogin_command and rsh_command) arestarted with the execution host, the port number and, in case of rsh_command, also thecommand name to execute as arguments.
Example:
/usr/bin/telnet exec_host 1234

Consult sge_conf(5) for more information.

Grid Engine Users’s Guide v 8.7.0 48

7 Other Job Types

Interactive jobs are not support from or to Windows hosts. One exception is the qrsh
with command, e.g. qrsh hostname. This works also from and to Windows hosts.

Note

7.2.1 qrsh and qlogin

qrsh without a command name as argument and qlogin submit an interactive job to thequeuing system which starts a remote session on the execution host where the currentlocal terminal is used for I/O. This is similar to rlogin or a ssh session without a commandname.
qrshwith a command executes the command on the execution host and redirects the I/O tothe current local terminal. By default, qrsh with command does not open a pseudo terminal(PTY), other than qlogin and qrsh without command, on the execution host. It simply pipesthe in- and output to the local terminal. This behavior can by changed via the -pty yes optionas there are applications that rely on a PTY.
Those jobs can only run in INTERACTIVE queues unless the jobs are not explicitly markedas non-immediate job using the -now no option.
7.2.2 qmake

qmake facilitates the possibility to distribute Makefile processing in parallel over the AltairGrid Engine. It is based on GNU Make 3.78.1. All valid options for qsub and qrsh are alsoavailable for qmake. Options which has to be passed to GNU Make has to be placed afterthe “–”-separator.
Syntax:
qmake [options] -- [gmake options]

Typical examples how to use qmake:
qmake -cwd -v PATH -pe compiling 1-10 -- -debug

This call changes the remote execution host into the current working directory, exports the
$PATH environment variable and requests between 1 and 10 slots in the parallel environ-ment compiling. This call is listed as one job in the Altair Grid Engine system.
Thismeans that Altair Grid Engine starts up to 10 qrsh sessions depending on available slotsand what is needed by GNUMake. The option -debug will, as it is after the “–”-separator, bepassed to the GNU Make instances.
As there is no special architecture requested, Altair Grid Engine assumes the one set in theenvironment variable $SGE_ARCH. If it is not set, qmake will produce a warning and startthe make process on any available architecture.
qmake -l arch=lx26-amd64 -cwd -v PATH --

Grid Engine Users’s Guide v 8.7.0 49

7 Other Job Types

Other than the example above, qmake is not bound to a parallel environment in this case.qmake will start an own qrsh job for every GNU Make rule listed in the Makefiles.
Furthermore, qmake support two different modes of invocation:

• Interactive mode: qmake invoked by command line implicitly submits a qrsh-job. Onthis master machine the parallel make procedures will be started and qmake will dis-tribute the make targets and steps to the other hosts which are chosen.
• Batch mode: If qmake with the –inherit option is embedded in a simple batch scriptthe qmake process will inherit all resource requirements from the calling batch job.Eventually declared parallel environments (pe) or the -j option in the qmake linewithin the script will be ignored.

Example:
#!/bin/sh
qmake --inherit --

Submit:
qsub -cwd -v PATH -pe compiling 1-10 <shell_script>

7.2.3 qsh

qsh opens a xterm via an interactive X-windows session on the execution host. The displayis directed either to the X-server indicated by the $DISPLAY environment variable or the onewhichwas set by the -display qsh command line option. If no display is set, Altair Grid Enginetries to direct the display to 0.0 of the submit host.
7.3 Parallel Jobs

A parallel job runs simultaneously across multiple execution hosts. To run parallel jobswithin the Altair Grid Engine system it is necessary to set up parallel environments (pe).It is customary is to have several of such parallel environments e.g. for the different MPIimplementations which are used or different ones for tight and loose integration. To takeadvantage of parallel execution, the application has to support this. There are a dozensoftware implementations that support parallel tasks like OpenMPI, LAM-MPI, MPICH or PVM.supports two different ways of executing parallel jobs:
• Loose Integration

Altair Grid Engine generates a custommachine file listing all execution hosts chosen for thejob. Altair Grid Engine does not control the parallel job itself and its distributed tasks. Thismeans that there is no tracking of resource consumption of the tasks and no way to deleterunaway tasks. However, it is easy to set up and nearly all parallel application technologiesare supported.
Grid Engine Users’s Guide v 8.7.0 50

7 Other Job Types

• Tight Integration
Altair Grid Engine takes control of the whole parallel job execution. This includes spawningand controlling of all parallel tasks. Unlike the Loose Integration Altair Grid Engine is ableto track the resource usage correctly including all parallel tasks as also to delete runawaytasks via qdel. However the parallel applications has to support the tight Altair Grid Engineintegration (e.g. OpenMPI which has to be built with –enable-sge).
7.3.1 Parallel Environments

Setup a parallel environment

qconf -ap my_parallel_env

This will create a parallel environment with the name my_parallel_env. In the openingeditor it is possible to change the properties of the pe.
Property Description

pe_name The name of the parallel environment. This one has to be specified at job sub-mission.
slots The maximum number of slots which can be used/requested concurrently.
user_lists User-sets which are allowed to use this pe. If NONE is set, everybody is allowedto use this pe.
xuser_lists User-sets which are not allowed to use this pe. If NONE is set, everybody isallowed to use this pe.
start_proc_args This command is started prior the execution of the parallel job script.
stop_proc_args This command proceeds the execution of the parallel job script finished.
per_pe_task_prolog This command is started prior the execution of any parallel slave task.
per_pe_task_epilog This command is started after a parallel slave task finished.
allocation_rule The allocation rule is interpreted by the scheduler and helps to determinethe distribution of parallel processes among the available execution hosts. There are threedifferent rules available:- <int>: This defines the number of max processes allocated at each host.- $fill_up: All available slots on a host will be used (filled up). If there are no more slotsavailable on this particular host, the remaining processes will be distributed to the nexthost.- $round_robin: All processes of a parallel job will be uniformly distributed of the Altair GridEngine system.
control_slaves This options is in control when the parallel environment is loose or tightlyintegrated.

Grid Engine Users’s Guide v 8.7.0 51

7 Other Job Types

job_is_first_task This parameter indicates if the job submitted already contains one of theparallel tasks.With the introduction of per task requests (-petask submit option) it is advised to not setthis property to FALSE anymore.
urgency_slots For pending jobs with a slot range pe request, the number of slots is notdetermined. This setting specifies the method to be used by Altair Grid Engine to assessthe number of slots such jobs might finally get. These methods are available:- <int>: This integer number is used as prospective number of slots.-min: The slot range minimum is used as prospective number of slots.-max: The slot range maximum is used as prospective number of slots.- avg: The average of all numbers occurring within the job’s pe range request is assumed.
accounting_summary If set to TRUE, the accounting summary of all tasks are combined inone single accounting record otherwise every task is stored in an own accounting record.This option is only considered if control_slaves is also set.
daemon_forks_slaves If this parameter is TRUE, a single daemon is started via qrsh
-inherit on every slave host which forks the slave tasks (value TRUE, e.g. used for openmpior lam integration). To use this parameter control_slaves has to be TRUE.
master_forks_slaves This parameter can be set to TRUE if the master task (e.g. mpiruncalled in the job script) starts tasks running on the master host via fork/exec instead ofstarting them via qrsh -inherit. To use this parameter control_slaves has to be TRUE.—————————————————————————————-
: Properties of the Parallel Environment (PE)
These properties will additionally be shown when using qconf -sp:

Table 22: Read-only properties of the Parallel Environment (PE)
Property Description
used_slots The number of currently occupied slots of this parallelenvironment. This is a read-only value and will only show with

qconf -sp!
bound_slots The number of currently occupied slots of this parallelenvironment that got preempted, but are not yet available.This is a read-only value and will only show with qconf -sp!

Table 23: Examples and Templates for MPI and PVM
Example/Template Parallel Environment
/SGE_ROOT/mpi/ MPI and MPICH/SGE_ROOT/pvm/ PVM

See sge_pe(5) for detailed information.

Grid Engine Users’s Guide v 8.7.0 52

7 Other Job Types

7.3.2 Submitting Parallel Jobs

Parameter Description

-pe parallel_environment This parameter indicates that this is a parallel job. n[-[m]][-]m

For declaring the parallel_environment the wildcard character * is allowed (e.g. mpi*).
Note

Allowed Range Specifications for Job

n-m
Minimum n slots and Maximum m slots

Example: 2-10

m

This is an abbreviation for m-m. Exactly m slots
are needed.

Example: 10

-m

This is an abbreviation for 1-m.

Example: -10

n-

At least n slots are needed but as much as possible
slots are wanted.

Example: 10-

-petask tid_range_list . . . Allows to define for a range of parallel tasks specific resource andqueue requests. tid_range_list “tid_range_list” := “tid_range” [, “tid_range”, . . .] | ‘master’ |‘slaves’ “tid_range” := n [‘-’ [m] [’:’s]] where n and m are the lower and upper PE task ID ands is the step size.
Examples for tid_range_lists:

-petask 0
-petask master

Grid Engine Users’s Guide v 8.7.0 53

7 Other Job Types

Both denote the master task.

-petask 1-
-petask slaves
Both denote all slave tasks.

-petask 1-:2
Every second PE task starting with PE task ID 1, i.e. 1,3,5,7,...

-petask 1-7:2,6
The PE tasks IDs 1,3,,5,6,7

-masterq queue Allows to define on which queue the master task has run. This parameteris deprecated, use -petask master -q queue instead.
-masterl requests Allows to define resource requests for themaster task. This parameterisdeprecated, use -petask master -l requests instead.
: Parameters to Submit a Parallel JobExample:qsub -pe mpi_pe 4-10 -petask master -q super.q mpi.shSee submit(1) for more information.### Parallel Jobs and Core Binding

Core Binding is not supported on Windows execution hosts.
Note

The behavior of the core-binding command for PE-jobs changed with Altair Grid Engineversion 8.6! The amount of cores to bind specified during submission changed frommeaning “per host” to mean “per PE-task”. For more information, see the section [PE-Jobs with core binding][PE-Jobs with core binding]

Note

Parallel jobs can exploit the core binding feature in different ways. The followingsections provides an overview of there different methods which can be used.
Using the -binding pe RequestOne possibility of assigning CPU cores to a job is using the “pe” flag of the bindingoption itself. The following example demonstrates requesting two cores per host, aswell as two slots per host, on all two hosts where the parallel job runs.qsub -binding pe linear:2 -pe fixed2 4 . . .Note that the parallel environment fixed2 contains following fixed allocation rule:allocation_rule 2

Grid Engine Users’s Guide v 8.7.0 54

7 Other Job Types

The allocation rule enforces the scheduler to select two slots per host, while the bindingrequest enforces the scheduler to select 2 free cores per host.After dispatching the parallel job, the selected cores are marked as used in thescheduler. This can be displayed using the qhost -F m_topology_inuse topology string.The selected cores of a specific parallel job are displayed in the qstat -j <jobno> outputin the binding output.binding 1: host_10=0,0:0,1, host_12=0,0:0,1This means that on host_10 the job got core 0 and core 1 on the socket 0 and onhost_12 the same core selection was done.With using the -binding pe option the scheduler does its decision and marks thosecores as used but on the execution side no real core binding done (in contrast to the
-binding set (which equals just -binding) option. What Altair Grid Engine does is that itwrites its decision to the pe_hostfile in the last column. This file is usually exploited bytight parallel jobs integration.In the example it looks as follows:host_10 2 all.q@macsuse 0,0:0,1 host_12 2 all.q@u1010 0,0:0,1Using these <socket,core> pairs which are separated by a “:” sign the parallel job canexploit the information and bind the parallel jobs on these cores. Note, that whenhaving multiple queue instances on a host and the parallel job spans over differentqueue instances on the same host, that multiple entries for one host in the “pe_hostfile”exists. Since the binding is a “per host” decision (as it is a per host request) all decisionsfor on particular host but different queue instances on that host are the same. Sinceversion 8.1. different decisions for different hosts can be made. Hence a “pe_hostfile”can also look like below.host_10 2 all.q@macsuse 1,2:1,2 host_12 2 all.q@u1010 0,0:0,1One example how to exploit this information to bind the parallel tasks on differentcores is using the “rankfile” of OpenMPI. With the rankfile it can be controlled howOpenMPI binds each individual rank to a separate core. This can massively improve theperformance of OpenMPI. Like for other tight integrations such a rankfile must becreated based on the “pe_hostfile” information. Altair Grid Engine contains an examplein the $SGE_ROOT/mpi/openmpi_rankfile product directory.
Using the SGE_BINDING Environment Variable## Jobs with Core Binding

The output of qstat -j changed in 8.1 with respect to the final binding done per jobtask. Before just one topology string was reported (for the master task), since 8.1 corebindings on all hosts where the parallel job runs are showed as lists of , tuples.

Note

Grid Engine Users’s Guide v 8.7.0 55

7 Other Job Types

Since version 8.1 regardless of the binding mode (env, pe, or set) the SGE_BINDINGenvironment variable will always be available.
Note

Core Binding is not supported on Windows execution hosts.
Note

Today’s execution hosts are usually multi-socket and multi-core systems with ahierarchy of different caches and a complicated internal architecture. In many cases itis possible to exploit the execution host’s topology in order to increase the userapplication performance and therefore the overall cluster throughput. Anotherimportant use case is to isolate jobs on the execution hosts from another in order toguarantee better run-time stability and more fairness in case of over-allocation of thehost with execution threads. The Altair Grid Engine provides a complete subsystem,which not just provides information about the execution host topology, it also allowsthe user to force the application to run on specific CPU cores. Another use is so that theadministrator can ensure via JSV scripts that serial user jobs are using just one core,while parallel jobs with more granted slots can be run on multiple CPU cores. In AltairGrid Engine core binding on Linux execution hosts is turned on by default, while onSolaris hosts it must be enabled per execution host by the administrator (see Enablingand Disabling Core Binding).

Run the utilbin/<ARCH>/loadcheck -cb command in order to figure out the support ofcore binding on the specific execution hosts.
Note

In Altair Grid Engine version 8.1 the component, which is responsible for core selectionon execution hosts was moved from the execution host component into the schedulercomponent. Hence it is possible now to guarantee a specific binding for a job becausethe scheduler searches just for hosts which can fulfill the requested binding.### Showing Execution Host Topology Related InformationBy default, the qhost output shows the number of sockets, cores and hardwaresupported threads on Linux kernel versions 2.6.16 and higher and on Solaris executionhosts:> qhost HOSTNAME ARCH NCPU NSOC NCOR NTHR LOAD MEMTOT MEMUSE SWAPTOSWAPUS ———————————————————————————— global - - - - - - - - -host1 lx-amd64 1 1 1 1 0.16 934.9M 150.5M 1004.0M 0.0 host2 lx-amd64 4 1 4 1 0.182.0G 390.8M 2.0G 0.0 host3 lx-amd64 1 1 1 1 0.06 492.7M 70.2M 398.0M 0.0

Grid Engine Users’s Guide v 8.7.0 56

7 Other Job Types

There are also several topology related host complexes defined after an Altair GridEngine standard installation:> qconf -sc . . . m_core core INT <= YES NO 0 0 NO 0.000000 YES YES m_socket socketINT <= YES NO 0 0 NO 0.000000 YES YES m_thread thread INT <= YES NO 0 0 NO0.000000 YES YES m_topology topo RESTRING == YES NO NONE 0 NO 0.000000 YES YESm_topology_inuse utopo RESTRING == YES NO NONE 0 NO 0.000000 YES YESm_topology_numa numa RESTRING == YES NO NONE 0 NO 0.000000 YES YESm_cache_l1 mcache1 MEMORY <= YES NO 0 0 NO 0.000000 YES YES m_cache_l2mcache2 MEMORY <= YES NO 0 0 NO 0.000000 YES YES m_cache_l3 mcache3 MEMORY<= YES NO 0 0 NO 0.000000 YES YES m_numa_nodes nodes INT <= YES NO 0 0 NO0.000000 YES YESThe host specific values of the complexes can be shown in the following way:> qstat -F m_topology,m_topology_inuse,m_socket,m_core,m_thread queuename qtyperesv/used/tot. load_avg arch states——————————————————————————— all.q@host1 BIPC 0/0/10 0.00lx26-amd64 hl:m_topology=SC hl:m_topology_inuse=SC hl:m_socket=1 hl:m_core=1hl:m_thread=1 ——————————————————————————— all.q@host2BIPC 0/0/10 0.00 lx26-amd64 hl:m_topology=SCCCC hl:m_topology_inuse=SCCCChl:m_socket=1 hl:m_core=4 hl:m_thread=4——————————————————————————— all.q@host3 BIPC 0/0/10 0.00lx26-amd64 hl:m_topology=SC hl:m_topology_inuse=SC hl:m_socket=1 hl:m_core=1hl:m_thread=1
m_topology and m_topology_inuse are topology strings. They encode sockets (S), cores
(C), and hardware supported threads (T). Hence SCCCC denotes one socket host with aquad core CPU and SCTTCTTSCTTCTT would encode a two socket system with a dual-coreCPU on each socket, which supports hyperthreading. The difference between the twostrings is that m_topology remains unchanged, even when core bound jobs are runningon the host, while m_topology_inuse displays the cores, which are currently occupied(with lowercase letters). For example SccCC denotes a quad-core CPU, which has twojobs bound on the first and second core, if each job requested only one core.
m_socket denotes the number of sockets on the host. m_core is the total number ofcores, the host offers. m_thread is the total number of hardware supported threads thehost offers. m_topology_numa is an enhanced topology string. In addition to the S, C, and
T keywords there are [and] characters which are marking a specific NUMA node onthe execution host. A NUMA (non-uniform memory access) node is a particular area forwhich the memory latency is the same (usually it is per socket memory).### Requesting Execution Hosts Based on the ArchitectureIn order to request specific hosts for a job, all the complexes described in thesub-section above can be used. Because and are regular expression strings (typeRESTRING) special symbols like * can be used as well. In the following example a quadcore CPU is requested:> qsub -b y -l m_topology=SCCCC sleep 60This does not correspond to:> qsub -b y -l m_core=4,m_socket=1 sleep 60Because the latter request does also match to a hexacore or higher CPU becausem_core is defined as “<=”. In order to get a host with a free (currently unbound)quadcore CPU:> qsub -b y -l m_topology_inuse=SCCCC sleep 60

Grid Engine Users’s Guide v 8.7.0 57

7 Other Job Types

In order to get a host with at least one quad core CPU, which is currently not used by acore bound job:> qsub -b y -l m_topology_inuse=“SCCCC” sleep 60### Requesting Specific Cores

Topology selections (socket/core selections) are not part of a resource reservation yet.Hence jobs submitted with a specific binding and -R y might not be started even whena reservation was done. This can be prevented when using the -binding linear requestand aligning the amount of slots per host to the amount of cores per host.

Note

Altair Grid Engine supports multiple schemata in order to request cores on which thejob should be bound. Several adjoined cores can be specified with the linear:<amount>request. In some cases it could be useful to distribute the job over sockets, this can beachieved with the striding:<stepsize>:<amount> request. Here the stepsize denotesthe distance between two successive cores. The stepsize can be aligned with a
m_topology request in order to get the specific architecture. The most flexible requestschema is explicit:<socket,core>[:<socket,core>[...]]. Here the cores can beselected manually based on the socket number and core number.Examples:Bind a job on two successive cores if possible:> qsub -b y -binding linear:2 sleep 60Request a two-socket dual-core host and bind the job on two cores, which are ondifferent sockets:> qsub -b y -l m_topology=SCCSCC -binding striding:2:2 sleep 60Request a quad socket hexacore execution host and bind the job on the first core oneach socket:> qsub -b y -l m_topology=SCCCCCCSCCCCCCSCCCCCCSCCCCCC -bindingexplicit:0,0:1,0:2,0:3,0 sleep 60### PE-Jobs with core binding

The behavior of the core-binding command for PE-jobs changed with Altair Grid Engineversion 8.6! The amount of cores to bind specified during submission changed frommeaning “per host” to mean “per PE-task”.

Note

For PE-jobs it is hard or even impossible to know in advance how many tasks are goingto be scheduled on how many hosts. Therefore, with Altair Grid Engine version 8.6, thecore-binding request changed its behavior to accommodate this fact. Thebinding-request changed its meaning from being a “per host” request, to being a “perPE-task” request. This means that the requested amount of cores means for a PE-job“per PE-task”.
Grid Engine Users’s Guide v 8.7.0 58

7 Other Job Types

For example, if a job with> qsub -pe mype 5-7 -binding linear:2 -b y sleep 60is submitted, it means that each PE-task will get 2 cores, no matter on which host or onhow many hosts the tasks are scheduled.There are different binding-strategies, most of them exist in two versions: “host aware”and “host unaware” strategies. For example, there are two versions of linear bindingstrategies: linear and linear_per_task. Host unaware strategies have the suffix“_per_task”.With “host aware” strategies, all tasks that end up on a host have to adhere to the givenstrategy together. For “host unaware” strategies, each task has to adhere to thestrategy on its own. This is less strict and usually more tasks can fit on a host. Forexample, if a job with> qsub -pe mype 2-4 -binding striding:2:2 -b y sleep 60is submitted to a single host with the topology SCCCCCCCC, the resulting topology wouldbe ScCcCcCcC, with 2 tasks on that host. Here task 1 would get the binding ScCcCCCCCand task 2 SCCCCcCcC. Both tasks together have to adhere to the strategy striding witha step size of 2.On the other hand, if the same job is submitted with the strategy striding_per_task,> qsub -pe mype 2-4 -binding striding_per_task:2:2 -b y sleep 60one would get 4 scheduled tasks and the topology Scccccccc, where task 1 would get
ScCcCCCCC, task 2 SCCCCcCcC, task 3 SCcCcCCCC and task 4 SCCCCCcCc. Each task has toadhere to the strategy striding on its own, but now they can be interleaved.With “host aware” strategies, PE-tasks “see each other”, when it comes to selectingcores, whilst for “host unaware” strategies, PE-tasks do not “see each other”.For more information, especially on the possible binding strategies and their behavior,see man page submit(1).## NUMA Aware Jobs: Jobs with Memory Binding and Enhanced Memory Management

Only jobs running on lx-amd64 execution hosts are able to be set to use a specificmemory allocation strategy. The loadcheck -cb utility will showmore information aboutthe capabilities of the execution host. May not work with older Linux kernels or withmissing libnuma system library.

Note

Since today’s execution hosts are not only multi-core hosts but also having a NUMAarchitecture there is a need to align jobs with the particular memory allocation strategy.Altair Grid Engine 8.7 allows you to do so by using the -mbind submission parameteralone or in combination with the -binding parameter as well as with the followingmemory related complexm_mem_free. Advantages can be more stable and undercertain circumstances result in faster job run-times and better job isolation. With AltairGrid Engine 8.7 following complexes are additionally created during installation time:

Grid Engine Users’s Guide v 8.7.0 59

7 Other Job Types

Complex Name Description
m_topology_numa The NUMA topology string which displays the NUMA nodes ofthe specific architecture.

m_mem_free Displays the amount of free memory available on the execution host. Usedfor requesting NUMA memory globally on host as well as implicitly on the different NUMAnodes, depending on the schedulers decision (source /proc/meminfo and scheduler inter-nal accounting). From the /proc/meminfo file the sum of FreeMem, Buffers, Cached, andSwapCached is taken into account as free memory (since 8.1.4).
m_mem_used Displays the amount of used memory in the host.
m_mem_total Displays the amount of total memory on the host (source /proc/meminfo).
m_mem_free_n0 - Displays the amount of free memory the node (source m_mem_free_n3/sys/devices/system/node/node0/meminfo and scheduler internal accounting). From the/node/meminfo file the sumof Inactive and Freememory is taken into account as freemem-ory (since 8.1.4).
m_mem_used_n0 - Displays the amount of used memory on the node (total - free).m_mem_used_n3
m_mem_total_n0 - Displays the amount of totalmemory the node (sourcem_mem_total_n3/sys/devices/system/node/node0/meminfo).
m_cache_l1 Amount of level 1 cache on the execution host.
m_cache_l2 Amount of level 2 cache on the execution host.
m_cache_l3 Amount of level 3 cache on the execution host.

7.4 m_numa_nodes Amount of NUMA nodes on the execution host.

: NUMA related complexes
The -mbind parameter has following effect:

Table 27: The -mbind submission parameter
Parameter Description Dependencies
-mbind cores The job prefers memoryon local NUMA nodes(default), but the job is alsoallowed to use memoryfrom other NUMA nodes.

required: -binding optional: -lm_mem_free=<mem_per_slot>

-mbindcores:strict The job is only allowedallocate memory on thelocal NUMA node.
see -mbind cores

-mbindround_robin The memory allocated bythe job is provided by theOS in an interleavedfashion.

optional: -lm_mem_free=<mem_per_slot>

Grid Engine Users’s Guide v 8.7.0 60

7 Other Job Types

Parameter Description Dependencies
-mbind nlocal Sets implicitly core bindingas well as memory bindingstrategy chosen by thescheduler.

required: -l
m_mem_free=<mem_per_slot> notallowed: -binding

There is a special memory consumable which can be used in conjunction with the -mbindparameter: m_mem_free. This complex holds the total amount of free memory on allNUMA nodes of the execution host. The value is derived from the actual load reportedby the execution host as well as from the load calculated by the scheduler based on thememory requests. The minimum of both values is the observed value of m_mem_free.In case the execution host has different NUMA nodes, the memory status of those isshown in the m_mem_fee_n complex values. Accordingly, there are complexes showingthe total amount of memory per node as well as the used memory per node. Afterinstallation them_mem_free consumables are initialized on host level through setting thehost complex_values field to the specific values. They can be showed by the qconf -se
<exechostname> command.

Resource reservation with core binding or memory affinity when m_mem_free is usedis currently not fully supported. This means that for specific implicit memory requests(memory per NUMA node/socket) no reservation is done.

Note

If the job can’t run due to a non-valid binding or missing memory the job can get a reser-vation on the (not on core or per socket memory resources), but only when the requestedmemory is lower than the actual amount of memory (m_mem_free). In order to overcomethis issue the reporting of m_mem_free as load value can be turned off with execd_paramsDISABLE_M_MEM_FREE=1 (qconf -mconf).
Depending on the -mbind request, the -binding request, them_mem_free request and theamount of slots (parallel environment jobs) the scheduler seeks an appropriate executionhost, which can fulfill the requests and decrements the amount of memory automaticallyfor the chosen NUMA nodes.
7.4.1 Memory Allocation Strategy round_robin

This memory allocation strategy sets the memory policy of the jobs process into an inter-
leavedmode. This means that memory allocations are distributed over different memoryregions. If the job is scheduled to hosts which don’t support this, the OS default memoryallocation is done.
When memory allocation strategy round_robin was requested together with the specialresource m_mem_free then the requested amount of memory is decremented from the
m_mem_free variable. Additionally the per socket memory (m_mem_free_n_N_) is decre-mented equally from all sockets of the selected execution host.
When it is not possible to distribute the amount of free memory equally (because one ormore of the NUMA nodes don’t offer that amount of memory), then the host is skipped.
Grid Engine Users’s Guide v 8.7.0 61

7 Other Job Types

For parallel jobs, when requested m_mem_free together with -mbind round_robin, theamount ofm_mem_free actually decremented on a particular host depends on the amountof granted slots on this host and at the same time it limits (the socket with the least amountof free memory) the amount of slots which can be granted, when needed. For example:When 4 slots are granted on a particular host, the amount ofm_mem_free is multiplied by4. Hence each socket has to offer (m_mem_free * 4) / <amount_of_NUMA_sockets> bytesfree on each socket.
Examples:
qsub -mbind round_robin -binding striding:2:4 mem_consuming_job.sh

This results in a job which runs on a 2 quad core socket machine with memory affinity setto interleaved (to all memory banks on the host) for best possible memory throughput forcertain job types.
qsub -mbind round_robin mem_consuming_job.sh

This results in a job which runs unbound and takes memory in an interleaved fashion.
qsub -mbind round_robin -binding linear:2 -pe mytestpe 4 -l m_mem_free=2G -b y

sleep 13

Let’s assume here that mytestpe has an allocation rule of pe_slots. Then the job is run-ning on a host which offers 4*2GB=8GB of m_mem_free as well as on each NUMA node(m_mem_free_nX) at least 8GB/ free memory. The memory consumable m_mem_free isdecrement by 8GB and all consumables representing a NUMA node (m_mem_free_n0 tom_mem_free_nX) are decremented by 8GB/ memory. The same behaviour can be seenwhen “-binding” strategy is changed to any of the available ones, or even when “-binding” isnot selected.
7.4.2 Memory Allocation Strategy cores and cores:strict

This memory allocation strategy takes memory from all NUMA nodes where the job is
bound to (with core binding) into account. If no core binding (-binding) was requested thejob is rejected during submission time. Depending on the parameter the memory requestis either restricted to local NUMA nodes (cores:strict) only or local memory is preferred
(cores).
If thememory request, which comes with the job submission command, can not be fulfilled(because NUMA node N offers not as much memory) the node is skipped by the scheduler.On 64bit Linux internally the system callmbind (see man mbind) is executed.
The requested memory (when using -l m_mem_free) is decremented from m_mem_freeas well as from the NUMA nodes (m_mem_free_n_N_) where the job is bound to. Whena job gets for example 2 cores on socket 1 and one core on socket 2 then the amount ofmemory on m_mem_free_n1 is decremented by the total amount of requested memorydivided by the amount of granted cores (here 3) multiplied by the amount of granted cores
Grid Engine Users’s Guide v 8.7.0 62

7 Other Job Types

on the particular NUMA node (here 2). The consumablem_mem_free_n2 is charged by halfof this amount of memory.
Strict means: Only local memory on NUMA node allowed.
Without any keyword the memory allocation strategy is set on Linux to the “preferred”mode, thatmeans the job getsmemory from the near node as long as there is freememory.When there is no more free memory it is allowed to use memory from a greater distance.
Examples:

qsub -mbind cores -binding linear:1 /bin/sleep 77

The job gets bound to a free core. The memory requests are preferred on the same NUMAnode. If there is no more memory free the next memory request is taken from a node withan higher distance to the selected core.
qsub -mbind cores -binding linear:1 -l m_mem_free=2G /bin/sleep 77

The job gets bound to a free core only on a NUMA node which currently offers 2GB. Thememory requests are preferred on the same NUMA node. If there is no more memory freethe next memory request is taken from a node with an higher distance to the selected core.The requested memory is debited from nX_mem_free consumable (memory job-request /amount of occupied cores on node).

This could cause out of memory errors on strict jobs in case of overflows. Hence mixingstrict with preferred jobs is not recommended.
Warning

qsub -mbind cores:strict -binding linear:1 /bin/sleep 77

The job gets bound to a free core. The memory is always taken from the local NUMA node.If there is no more memory free on the NUMA node the program gets by the next programbreak extension (brk()) an out of memory exception.
qsub -mbind cores:strict -binding striding:2:4 -pe mytestepe 2 -l m_mem_free=2G

/bin/sleep 77

Complete parallel job requests 2G * 2 slots = 4GB memory and 2 cores on two sockets(quad core processors). Assumption: Each core needs 2 GB. The job gets scheduled to aparticular host if both NUMA nodes (here both sockets) offer each 2GB m_mem_free_nX. Ifnot the host is skipped. The particular consumables are decremented by that amount.
qsub -mbind cores /bin/sleep 77

The job gets rejected because the binding is missing.
Grid Engine Users’s Guide v 8.7.0 63

7 Other Job Types

7.4.3 Memory Allocation Strategy nlocal

This memory allocation strategy automatically allocates cores and set an appropriate mem-ory allocation strategy for single-threaded or multi-threaded (parallel environments withallocation_rule pe_slots) depending on the memory request and the execution hosts char-acteristics (free sockets/cores and free memory on the specific NUMA nodes).

Requirements: No core binding request set (otherwise the job is rejected), but a manda-tory request for them_mem_free consumable. If this consumable is not requested thejob is rejected.

Note

-mbind nlocal with Sequential Jobs
The nlocal strategy is intended to use for sequential as well for multi-threaded jobs inorder to get stable job run-time results as well highest amount of memory throughput.The only requirement for the jobs is the amount of memory the job needs per slot (-lm_mem_free=). When multiple slots are needed then a parallel environment with the al-location rule “pe_slots” (so that the job is not distributed to different hosts) is required. Thebehavior is undefined with PEs having other allocation rules configured. The schedulertries to place jobs on sockets which offers most free cores and have additionally the re-quired amount of memory free on the specific NUMA node (m_mem_free_n<node>). If therequired amount of memory is more than each socket has installed the job will run on onesocket exclusively if one is completely free (with out any core-bound jobs). If the requiredmemory is more than free memory each NUMA node (socket) can offer, but less than in-stalled memory on the NUMA nodes, the host is skipped. In this scenario the job has eitherto wait until the required amount of memory is free on this host or it can run an a moreappropriate host.
On NUMA execution nodes the scheduler tries to do following for sequential jobs:

• If the host can’t fulfill them_mem_free request then the host is skipped.
• If the job requests more ram than free on each socket but less than installed on thesockets the host is skipped.
• If memory request is smaller than amount of freememory on a socket, try to bind thejob to one core on the socket and decrement the amount of memory on this socket(m_mem_free_n<nodenumber>). The global host memory m_mem_free on this hostis decremented as well.
• If memory request is greater than the amount of free memory on any socket, find anunbound socket and bind it there completely and allowmemory overflow. Decrementfromm_mem_free as well as fromm_mem_free_n and the remaining memory roundrobin from the remaining sockets.
• If both are not possible go to the next host.

-mbind nlocal with Parallel Jobs
Parallel jobs are handled in the scheduler the following way (only pe_slots PEs are sup-ported, the behaviour for other allocation rules is unspecified):
Grid Engine Users’s Guide v 8.7.0 64

7 Other Job Types

• Hosts that do not offerm_mem_freememory are skipped (of course hosts that do notoffer the amount of free slots requested are skipped as well).
• If the amount of requested slots is greater than the amount of cores per socket. Thejob is dispatched to the host without any binding.
• If the amount of requested slots is smaller than the amount of cores per socket dofollowing:

– If there is any socket which offers enough memory (m_mem_free_n) and enoughfree cores bind the job to these cores and set memory allocation mode to
cores:strict (so that only local memory requests can be done by the job).

– If this is not possible try to find a socket which is completely unbound andhas more than the required amount of memory installed (m_mem_total_n).Bind the job to the complete socket, decrement the memory on that socket atm_mem_free_n (as well as host globally on m_mem_free), and set the memoryallocation strategy to cores (preferred usage of socket local memory).
If nothing matches then the host is skipped.
Other examples

The following example demonstrated how a parallel job with 4 threads (requesting the par-allel environment testpe for 4 slots (allocation_rule $pe_slots) each needed 1 gigabyte ofmemory is submitted (4 gigabytes for the job in total):
qsub -mbind cores:strict -binding linear:4 -pe testpe 4 -l m_mem_free=1G testjob.sh

For this job the scheduler skips all hosts which do not have 4 slots, 4 cores as well as 4gigabyte free (according to the m_mem_free value). If a host is found it is first tried toaccommodate the job on one single socket, if it is not possible then a distribution over theleast amount of sockets is tried. If the host does not fulfill the memory request on thechosen socket / NUMA node (m_mem_free_n<node>) the host is discarded. Otherwise thejob gets assigned the specific cores as well as the particular amount of memory on themachine as well on the NUMA nodes. Hence a -l m_mem_free request comes with implicitm_mem_free_n requests depending of the binding the scheduler determines.

7.5 Checkpointing Jobs

Checkpointing is not supported on Windows execution hosts.
Note

Checkpointing delivers the possibility to save the complete state of a job and to restart fromthis point of time if the job was halted or interrupted. Altair Grid Engine supports two kindsof Checkpointing jobs: the user-level and the kernel-level Checkpointing.

Grid Engine Users’s Guide v 8.7.0 65

7 Other Job Types

7.5.1 User-Level Checkpointing

User-Level Checkpointing jobs have to do their own checkpointing by writing restart filesat certain times or algorithmic steps. Applications without an integrated user-level check-pointing can use a checkpointing library like the Condor project.
7.5.2 Kernel-Level Checkpointing

Kernel-Level Checkpointing must be provided by the executing operating systems. Thecheckpointing job itself does not need to do any checkpointing. This is done by the OSentirely.
7.5.3 Checkpointing Environments

To execute and run checkpointing jobs environments, similar to parallel jobs, are necessaryto control how, when and how often checkpointing should be done.
Table 28: Handle Checkpointing Environments with qconf

Parameter Description
-ackpt add a checkpointing environment-dckpt delete the given checkpointing environment-mckpt modify the given checkpointing environment-sckpt show the given checkpointing environment

A checkpointing environment is made up of the following parameters:
Parameter Description

ckpt_nameThe name of the checkpointing environment. interfaceThe type of the checkpointing which should be used. Valid types:
hibernator

The Hibernator kernel-level checkpointing is interfaced.

cpr

The SGI kernel-level checkpointing is used.

cray-ckpt

The Cray kernel-level checkpointing is used.

Grid Engine Users’s Guide v 8.7.0 66

7 Other Job Types

transparent

\GEFullName{} assumes that the job submitted within
this environment uses a checkpointing library such as
the mentioned Condor.

userdefined

\GEFullName{} assumes that the job submitted within
this environment uses a its private checkpointing method.

application-level

Uses all interface commands configured in the
checkpointing object. In case of one of the kernel
level checkpointing interfaces the restart_command
is not used.

ckpt_commandCommand which will be executed by Altair Grid Engine to initiate a checkpoint.migr_commandCommand which will be executed by Altair Grid Engine during a migration of a checkpoint-ing job from one host to another. restart_commandCommand which will be executed by Altair Grid Engine if a previously checkpointed job isrestarted. clean_commandCommand which will be executed by Altair Grid Engine after a checkpointing job is com-pleted. ckpt_dirDirectory where checkpoints are stored. ckpt_signalA UNIX signal which is sent by Altair Grid Engine to the job when a checkpoint is initiated.whenPoint of time when checkpoints are expected to be generated. Valid values for thisparameter are composed by the letters s, m, x and r and any combinations thereof withoutany separating character in between: s The job is checkpointed, aborted and if possiblemigrated if the corresponding execution daemon is shut down on the job’s machine. mCheckpoints are generated periodically at the min_cpu_interval interval defined by thequeue in which a job executes. x A job is checkpointed, aborted and if possible, migratedas soon as the job is suspended (manually as well as automatically). r A job is rescheduled(not checkpointed) when the job host goes into an unknown state and the time intervalreschedule_unknown defined in the global/local cluster configuration is exceeded. ———————————————————————————————- : Handle CheckpointingEnvironments Parameters
7.5.4 Submitting a Checkpointing Job

qsub -ckpt <ckpt_env> -c <when_options> job

The -c option is not mandatory. It can be used to override the when parameters stated inthe checkpointing environment.
Grid Engine Users’s Guide v 8.7.0 67

7 Other Job Types

Example of a Checkpointing Script

The environment variable RESTARTED is set for checkpointing jobs that are restarted. Thisvariable can be used to skip e.g. preparation steps.
#!/bin/sh
#$ -S /bin/sh

Check if job was restarted/migrated
if [$RESTARTED = 0]; then

Job is started first time. Not restarted.
prepare_ckpt_env
start_job

else
Job was restarted.

restart_job
fi

7.6 Immediate Jobs

Altair Grid Engine tries to start such jobs immediately or not at all. If, in case of array jobs,not all tasks can be scheduled immediately, none will be started. To indicate an immediatejob, the -now option has to be declared with the parameter yes.
Example:
qsub -now yes immediate_job.sh

The -now option is available for qsub, qsh, qlogin and qrsh. In case of qsub no is the defaultvalue for the -now option, in case of qsh, qlogin and qrsh vice versa.

7.7 Reservations

With the concept of Advance Reservations (AR) it is possible to reserve specific resourcesfor a job, an user or a group in the cluster for future use. If the AR is possible (resourcesare available) and granted it is assigned an ID.
With Standing Reservations the allocation of recurring Advance Reservations can be sched-uled. Standing Reservations are defined through aweekly calendar which determineswhenAdvance Reservations start and when they end. The Advance Reservations within a Stand-ing Reservation behave like normal Advance Reservations with the difference that all Ad-vance Reservations have the same AR ID and that waiting jobs requesting that AR ID arenot deleted when one Advance Reservation ends. They are only deleted at the end of thelast occurrence of an Advance Reservation.

Grid Engine Users’s Guide v 8.7.0 68

7 Other Job Types

7.7.1 Advance Reservations

Configuring Advance Reservations To be able to create advance reservations the userhas to be member of the arusers list. This list is created during the Altair Grid Engine instal-lation. Use qconf to a user to the arusers list.
qconf -au username arusers

Creating Advance Reservations qrsub is the command used to create advance reserva-tions and to submit them to the Altair Grid Engine system.
qrsub -a <start_time> -e <end_time>

The start and end times are in [[CC]YY]MMDDhhmm[.SS] format. If no start time is given,Altair Grid Engine assumes the current time as the start time. It is also possible to set aduration instead of an end time.
qrsub -a <start_time> -d <duration>

The duration is in hhmm[.SS] format. Examples: The following example reserves an slot inthe queue all.q in host host1 starting at 04-27 23:59 for 1 hour.
qrsub -q all.q -l h=host2 -a 04272359 -d 1:0:0

Many of the options available for qrsub are the same as for qsub.
Monitoring Advance Reservations qrstat is the command to list and show all advancereservations known by the Altair Grid Engine system. To list all configured advance reser-vations type:
qrstat

To list a special advance reservation type:
qrstat <ar_id>

Every submitted AR has an own ID and a special state.
Table 30: Possible Advance Reservation States

State Description
w Waiting - Granted but start time not yet reachedr Running - Start time reachedd Deleted - Deleted manuallyW Warning - AR became invalid but start time is not yet reachedE Error - AR became invalid and start time is reachedGrid Engine Users’s Guide v 8.7.0 69

7 Other Job Types

Examples:
qrstat
ar-id name owner state start at end at duration

1 user1 w 04/27/2011 23:59:00 04/28/2011 00:59:00 01:00:00

qrstat -ar 1
id 1
owner user1
group users
name
account sge
project
jclass
submission_time 04/27/2011 15:00:11
start_time 04/27/2011 23:59:00
end_time 04/28/2011 00:59:00
duration 01:00:00
free_resources false
reserve_available_only false
immediate false
standing_reservation false
submit_cmd qrsub -q all.q -l h=host2 -a 04272359 -d 1:0:0
state w
resource_list hostname=host2
granted_slots_list all.q@host2=1

Modifying Advance Reservations qralter is the command used to modify already exist-ing advance reservations.
Example:
qrsub -a 201810101200 -e 201810101600
Your advance reservation 123 has been granted
qralter -e 201810101800 123
modified advance reservation 123

All attributes of an advance reservation which can be specified at AR submission time canalso be modified, provided that the resource consumption in the cluster allows for thechange.
All attributes can be changed for ARs being still pending or being running but without jobsrunning in the AR. It might become necessary to reschedule the AR, e.g. if resource requests(-l / -masterl) or queue requests (-q / -masterq) are modified. If rescheduling is not possibleas the requested resources are not available in the given time frame then qralter will printan error message and the AR will not be modified.
If an AR is already running and has running jobs
Grid Engine Users’s Guide v 8.7.0 70

7 Other Job Types

• Simple modifications not affecting the reserved resources like modifying the name(-N) or the account string (-A) will always work.
• Modifying start time (-a), end time (-e) or duration (-d) will work, if the resources heldby the AR will also be available in the new time frame. Reducing the time frame willalways be accepted.
• If rescheduling of the AR would be necessary as e.g. resource requests shall be mod-ified (-l / -masterl) or the given set of resources will not be available in an extendedtime frame (-e / -d) qralter will print an error message and the AR will not be modified.
• If rescheduling of the AR would be necessary but is prevented by jobs running in theAR it is possible to enable detaching of jobs from the AR by setting the qmaster_paramAR_DETACH_JOBS_ON_RESCHEDULE in the global configuration, see also sge_conf(5).

Deleting Advance Reservations qrdel is the command to delete an advance reservation.The command requires at least the ID or the name of the AR.
Example:
qrdel 1

A job which refers to an advance reservation which is in deletion will also be removed. TheAR will not be removed until all referring jobs are finished!
Using Advance Reservations Advance Reservations can be used via the -ar <ar_id> pa-rameter which is available for qsub, qalter, qrsh, qsh and qlogin.
Example:
qsub -ar 1 reservation_job.sh

Overwriting the consumable attribute of resources with AR submission In certainscenarios it may be useful or necessary to overwrite the consumable attribute of a re-quested resource. Imagine the following situation:
• the machines in your cluster have 32 cores and 2 GPUs per node
• GPU is a per job resource (defined with consumable JOB in the complex definition)
• you want to submit an advance reservation that will spawn multiple hosts and runmultiple parallel jobs each requesting one GPU and an arbitrary number of cores onone host

An AR submission
qrsub -pe mype 128 -l GPU=2 -d 7200

will give you 4 hosts but only 2 GPUs on one (the first) of the hosts
Grid Engine Users’s Guide v 8.7.0 71

7 Other Job Types

qrsub -pe mype 128 -l GPU=8 -d 7200

will not succeed as it would request 8 GPUs on the first host which are not available
You need to tell Altair Grid Engine to allocate 2 GPUs per host, which can be done by over-writing the per JOB definition of the complex variable by per HOST:
qrsub -pe mype 128 -l GPU=2{HOST} -d 7200

This will give you 4 hosts with 2 GPUs each. You can then submit multiple jobs in the ARwhich can get 1 or 2 GPUs per job, e.g.
qsub -ar ar_id -pe mype 16 -l GPU=1
qsub -ar ar_id -pe mype 64 -l GPU=2

7.7.2 Standing Reservations

Standing Reservations can only be created by users which are in the arusers list.
In order to create a Standing Reservation a calendar needs to be specified. The calendardetermines the start and end times of the Advance Reservations which are dynamicallycreated by the Standing Reservation.
Standing Reservations are per default endless unless an end time is specified either by theduration or by the end time switch.
The first allocated Advance Reservation is the next matching start date of the calendar un-less a later start time is specified.
The scheduler allocates per default the next 8 Advance Reservation instances during sub-mission time. Whenever an Advance Reservation ends it allocates onemore Advance Reser-vation to keep the instance count constant. The amount of allocated Advance Reservationsat a time is called depth and is a qrsub parameter (-cal_depth). The administrator can limitthe maximum depth with the MAX_AR_CAL_DEPTH qmaster parameter. Per default it islimited to 8.
In case an Advance Reservation instance cannot be allocated as the required resources arenot available at the given time interval it will go into Error (E) state and jobs will not bedispatched into this AR.
If the first Advance Reservation instance cannot be allocated submission of the StandingReservation will be rejected. The user can override this behaviour with the -cal_jmp pa-rameter. The -cal_jmp parameter specifies howmany non allocatable Advance Reservationinstancesmay be skipped at Standing Reservation submission time without the submissionbeing rejected.
The administrator can limit the amount of non-allocated reservationswith theMAX_AR_CAL_JMPparameter. Per default it is limited to 0.

Grid Engine Users’s Guide v 8.7.0 72

7 Other Job Types

Creating Standing Reservations Standing Reservations can be created with the qrsubcommand using a calendar specification. The calendar specification is the -cal_weekparameter which accepts a Altair Grid Engine weekly calendar specification (see man
calendar_conf). The weekly calendar is only allowed to set the state on.
$ qrsub -cal_week "mon-fri=08:30-11:30=on" -q all.q -pe mytestpe 10
Your advance reservation 4000000000 has been granted

This command creates Advance Reservations for each day fromMonday till Friday from8:30till 11:30 in the queue all.q for one slot. As with Advance Reservations, if multiple slots arerequired, a parallel environment with a certain amount of slots needs to be requested.
The above command tries to create the default amount of Advance Reservations startingfrom the next possible day. If an Advance Reservation ends a new one is allocated automat-ically after the last one in the schedule. In order to limit the amount of allocated AdvanceReservations at one point in time the -cal_depth parameter has to be used. Following com-mand allocates just one Advance Reservation when that one finishes a new one for the nextpossible date is created.
$ qrsub -cal_week "mon-fri=08:30-11:30=on" -cal_depth 1 —q all.q -pe mytestpe 10
Your advance reservation 4000000001 has been granted

It is possible that some of the Advance Reservations can not be allocated in the schedulesince resources are already in use. If this happens no further Advance Reservations arescheduled. In order to explicitly allow that unallocated times can be skipped the -cal_jmpparameter can be used. This parameter determines how many time ranges are allowed tobe skipped without an Advance Reservation if there are no resources available. Per defaultit is 0.
In the following example there is only 1 slot configured in the all.q with one host.
Now 3 Advance Reservations are scheduled with an unlimited calendar.
$ qrsub -cal_week "mon-fri=08:30-11:30=on" -cal_depth 3 -q all.q
Your advance reservation 4000000002 has been granted

In order to inspect the Standing Reservation the qrstat command line tool can be used.
$ qrstat -ar 4000000002

id 4000000002
owner daniel
group daniel2
name
account sge
project
jclass
submission_time 03/30/2016 11:34:34.815
start_time NONE

Grid Engine Users’s Guide v 8.7.0 73

7 Other Job Types

end_time NONE
duration NONE
free_resources false
reserve_available_only false
immediate false
standing_reservation true
sr_cal_week mon-fri=08:30-11:30=on
sr_cal_depth 8
sr_cal_jmp 0
submit_cmd qrsub -cal_week "mon-fri=08:30-11:30=on"

-cal_depth 3 -q all.q
sr_state_0 w
sr_start_time_0 03/31/2016 08:30:00.000
sr_end_time_0 03/31/2016 11:30:00.000
sr_duration_0 03:00:00.000
sr_allocated_0 true
sr_granted_parallel_environment_0
sr_granted_slots_list_0 all.q@mint14=1
sr_state_1 w
sr_start_time_1 04/01/2016 08:30:00.000
sr_end_time_1 04/01/2016 11:30:00.000
sr_duration_1 03:00:00.000
sr_allocated_1 true
sr_granted_parallel_environment_1
sr_granted_slots_list_1 all.q@mint14=1
sr_state_2 w
sr_start_time_2 04/04/2016 08:30:00.000
sr_end_time_2 04/04/2016 11:30:00.000
sr_duration_2 03:00:00.000
sr_allocated_2 true
sr_granted_parallel_environment_2
sr_granted_slots_list_2 all.q@mint14=1
free_resources false

The next Standing Reservation is requested with the same calendar. Hence the slots cannot be granted.
$ qrsub -cal_week "mon-fri=08:30-11:30=on" -cal_depth 3 -q all.q
Could not find time slots for Standing Reservation

But the Standing Reservation request can be allowed to skip (jump) over reservation timeswhen there are not enough slots.
$ qrsub -cal_week "mon-fri=08:30-11:30=on" -cal_depth 1 -cal_jmp 4 -q all.q
Your advance reservation 4000000003 has been granted

When inspecting the Standing Reservation it can be noticed that one Advance Reservationwas allocated (sr_allocated true) due to a depth of 1 and 3 times of the calendar schedulerare skipped over.
Grid Engine Users’s Guide v 8.7.0 74

7 Other Job Types

$ qrstat -ar 4000000003

id 4000000003
owner daniel
group daniel2
name
account sge
project
jclass
submission_time 03/30/2016 11:34:51.778
start_time NONE
end_time NONE
duration NONE
free_resources false
reserve_available_only false
immediate false
standing_reservation true
sr_cal_week mon-fri=08:30-11:30=on
sr_cal_depth 8
sr_cal_jmp 0
submit_cmd qrsub -cal_week "mon-fri=08:30-11:30=on"

-cal_depth 1 -cal_jmp 4 -q all.q
sr_state_0 w
sr_start_time_0 03/31/2016 08:30:00.000
sr_end_time_0 03/31/2016 11:30:00.000
sr_duration_0 03:00:00.000
sr_allocated_0 false
sr_granted_parallel_environment_0
sr_granted_slots_list_0 all.q@mint14=1
sr_state_1 w
sr_start_time_1 04/01/2016 08:30:00.000
sr_end_time_1 04/01/2016 11:30:00.000
sr_duration_1 03:00:00.000
sr_allocated_1 false
sr_granted_parallel_environment_1
sr_granted_slots_list_1 all.q@mint14=1
sr_state_2 w
sr_start_time_2 04/04/2016 08:30:00.000
sr_end_time_2 04/04/2016 11:30:00.000
sr_duration_2 03:00:00.000
sr_allocated_2 false
sr_granted_parallel_environment_2
sr_granted_slots_list_2 all.q@mint14=1
sr_state_3 w
sr_start_time_3 04/05/2016 08:30:00.000
sr_end_time_3 04/05/2016 11:30:00.000
sr_duration_3 03:00:00.000
sr_allocated_3 true
sr_granted_parallel_environment_3

Grid Engine Users’s Guide v 8.7.0 75

7 Other Job Types

sr_granted_slots_list_3 all.q@mint14=1

Creating a Time Restricted Standing Reservation In all previous examples there is nostart date for the first nor an end date for the last Advance Reservation. By using the -a,
-d, and -e switches of qrsub together with a calendar request, the Advance Reservationsscheduled within Standing Reservations can be limited.
The -a switch denotes the start time of the Standing Reservation. It is the earliest time thefirst AR within the Standing Reservation can be scheduled. Unlike for Advance Reservationsit is valid to specify a start time without an end time or duration. If an end time is specifiedwith -e then the last scheduled AR must end before the given time. Like the -a switch alsothe -e switch can requested as a single request.
The duration switch -d can be requested either with a start time (-a) which then specifiesthe end time or without any other request which then specifies the end time as the currenttime plus the duration. The next example demonstrates how a Standing Reservation withARs scheduled only in the first week of April 2016 can be requested. Note that -a, -e are
date_time requests ([[CC]YY]MMDDhhmm[.SS]) while the -d parameter is a time request(hours:minutes:seconds or seconds).
$ qrsub -cal_week "mon-fri=08:30-11:30=on" -a 1604010000 -e 1604080000 -q all.q
Your advance reservation 4000000005 has been granted

$ qrstat -ar 4000000005

id 4000000005
owner daniel
group daniel2
name
account sge
project
jclass
submission_time 03/30/2016 13:12:19.970
start_time 04/01/2016 00:00:00.000
end_time 04/08/2016 00:00:00.000
duration 168:00:00.000
free_resources false
reserve_available_only false
immediate false
standing_reservation true
sr_cal_week mon-fri=08:30-11:30=on
sr_cal_depth 8
sr_cal_jmp 0
submit_cmd qrsub -cal_week "mon-fri=08:30-11:30=on"

-a 1604010000 -e 1604080000 -q all.q
sr_state_0 w
sr_start_time_0 04/01/2016 08:30:00.000
sr_end_time_0 04/01/2016 11:30:00.000
sr_duration_0 03:00:00.000

Grid Engine Users’s Guide v 8.7.0 76

7 Other Job Types

sr_allocated_0 true
sr_granted_parallel_environment_0
sr_granted_slots_list_0 all.q@mint14=1
sr_state_1 w
sr_start_time_1 04/04/2016 08:30:00.000
sr_end_time_1 04/04/2016 11:30:00.000
sr_duration_1 03:00:00.000
sr_allocated_1 true
sr_granted_parallel_environment_1
sr_granted_slots_list_1 all.q@mint14=1
sr_state_2 w
sr_start_time_2 04/05/2016 08:30:00.000
sr_end_time_2 04/05/2016 11:30:00.000
sr_duration_2 03:00:00.000
sr_allocated_2 true
sr_granted_parallel_environment_2
sr_granted_slots_list_2 all.q@mint14=1
sr_state_3 w
sr_start_time_3 04/06/2016 08:30:00.000
sr_end_time_3 04/06/2016 11:30:00.000
sr_duration_3 03:00:00.000
sr_allocated_3 true
sr_granted_parallel_environment_3
sr_granted_slots_list_3 all.q@mint14=1
sr_state_4 w
sr_start_time_4 04/07/2016 08:30:00.000
sr_end_time_4 04/07/2016 11:30:00.000
sr_duration_4 03:00:00.000
sr_allocated_4 true
sr_granted_parallel_environment_4
sr_granted_slots_list_4 all.q@mint14=1

Submitting Jobs into Standing Reservations After a Standing Reservation was grantedthe given ID can be used like a Advance Reservation ID, i.e. the qsub -ar <ID> parameterneeds to be used to submit jobs into the Advance Reservations given by Standing Reser-vation. When one Advance Reservation ends jobs running in the Advance Reservation aredeleted. Jobs which are still queued remain waiting for the next occurrence of an AdvanceReservation instance of the Standing Reservation. By using the job start time parameter -ajobs can be further directed not to start in any Advance Reservation of the Standing Reser-vation before that time. When a Standing Reservation ends (when having an end time spec-ified or no further Advance Reservations can be allocated within the given constraints) alljobs, also waiting jobs are deleted.
The following example shows how to request a Standing Reservation.
$ qsub -ar 4000000000 myjob.sh

Monitoring Standing Reservations In order to display the individual Advance Reser-vation instances of a Standing Reservation the qrstat command line utility can be used.
Grid Engine Users’s Guide v 8.7.0 77

7 Other Job Types

Standard Advance Reservations and Standing Reservations are differentiated by the
standing_reservation entry (for qrstat -ar) or the sr (Standing Reservation) column (for
qrstat).
In the qrstat overview the state refers to the state of the next AR within the Standing Reser-vation. The start at, end at, aswell as duration column refer to the start, end, and duration ofthe whole Standing Reservation. If the Standing Reservation is not limited NONE is shown.
Following an example in which the first 3 entries are Standing Reservation and the last entryis an Advance Reservation.
$ qrstat
ar-id name owner state start at end at duration sr

4000000013 daniel w NONE NONE NONE true
4000000015 daniel r NONE NONE NONE true
4000000017 daniel w 03/30/2016 13:52:32 04/01/2016 13:52:32 48:00:00 true
4000000019 daniel w 10/10/2018 00:00:00 10/15/2018 08:00:00 128:00:00 false

Detailed information about the scheduled instances of the Advance Reservations within aStanding Reservation can be requested with the qrstat -ar switch. Following entries canbe seen:
Table 31: TABLE: Standing Reservation details

Entry Specification
sr_cal_week Shows the cal_week submission request.
sr_state_0 Shows the state of the first instance within the StandingReservation.
sr_start_time_0 Shows the start time of the first instance within the StandingReservation.
sr_end_time_0 Shows the end time of the first instance within the StandingReservation.
sr_duration_0 Shows the duration of the first instance within the StandingReservation.
sr_allocated_0 Shows if the first instance could reserve the requiredresources or not. If that is set to false then the -cal_jmpparameter must be set to > 0. Note that in unallocatedinstance no jobs can run since no resources are free. Theallocation is only tried once, for the first (amount given bythe -cal_depth parameter) ARs during qrsub time and forlater ARs whenever one AR within the Standing Reservationends.
sr_granted_parallel_
environment_0

Optionally shows the parallel environment the first instancewithin the Standing Reservation got granted.
sr_granted_slots_list_0 Shows the queue instances and the number of slots perqueue instance the first instance within the StandingReservation got granted.

Grid Engine Users’s Guide v 8.7.0 78

7 Other Job Types

For each scheduled Advance Reservation within the Standing Reservation a similar block ofentries is shown with the corresponding AR instance number.
The following example shows the details of a Standing Reservationwith 2 allocations (depth)which continues to allocated more ARs until it is explicitly deleted (qrdel) or no resourcescan be found for further scheduling more AR instances.
$ qrstat -ar 4000000003
--
id 4000000003
owner daniel
group daniel2
name
account sge
project
jclass
submission_time 04/08/2016 11:25:43.137
start_time NONE
end_time NONE
duration NONE
free_resources false
reserve_available_only false
immediate false
standing_reservation true
sr_cal_week 8:30-11:30=on
sr_cal_depth 2
sr_cal_jmp 0
submit_cmd qrsub -cal_week "mon-fri=08:30-11:30=on"

-a 1604010000 -e 1604080000 -q access
-cal_depth 2

sr_state_0 w
sr_start_time_0 04/09/2016 08:30:00.000
sr_end_time_0 04/09/2016 11:30:00.000
sr_duration_0 03:00:00.000
sr_allocated_0 true
sr_granted_parallel_environment_0
sr_granted_slots_list_0 access@u1010=1
sr_state_1 w
sr_start_time_1 04/10/2016 08:30:00.000
sr_end_time_1 04/10/2016 11:30:00.000
sr_duration_1 03:00:00.000
sr_allocated_1 true
sr_granted_parallel_environment_1
sr_granted_slots_list_1 access@u1010=1

7.8 Jobs using Docker Containers

Docker containers allow to run applications with specific demands for their software envi-ronment without the need to keep separate hosts just to provide that specific environment.
Grid Engine Users’s Guide v 8.7.0 79

7 Other Job Types

Docker containers are - from the users point of view - similar to virtual machines, but aremuch lighter and simpler and are easier to maintain.
Altair Grid Engine provides an integration with Docker which allows to start tasks of jobsinside Docker containers. Currently, this integration is supported only on newer Linux ver-sions. If Docker is installed on an execution host, this reports both the availability of Dockeron this host and the list of available Docker images. The availability of Docker is reported bythe docker complex of type BOOL; if Docker is available, the value is true. The list of locallyavailable Docker images on this host is reported as a comma separated list in the com-plex docker_images, which is of type RESTRING. The comma separated list has the format
REPOSITORY:TAG[,REPOSITORY:TAG,...], where the REPOSITORY and TAG define the Dockerimage like in the output of the docker images command. Because all images are reportedas one string, the request for an image must select one part of this string, which is done byusing wildcards, see the examples below.
7.8.1 Running a sequential job in a Docker container

There are two ways to start a sequential job in a Docker container:1) Specify the job or job script to start on the job submit command line2) Let Docker start whatever is defined as the ENTRYPOINT of the container
For bothways, to submit a job to a Docker container both the docker and the docker_imagescomplex must be requested, like in this job submit of the first kind:
$ qsub -l docker,docker_images="*centos:latest*" my_job.sh

This job will be starteda) on a host with a running and properly answering Docker daemon of at least version 1.8.3(see the AdminGuide or the Release Notes for the latest supported Docker version)b) where a Docker image is available that matches "*centos:latest*"
Because this is not a binary job, the job script gets transferred from the submit host to theexecution host by Altair Grid Engine. There, the script is copied to the job spool directory ofthe execution daemon. In order to allow this script to be started inside of the container, thespool directory must bemade available inside the container (which is called “binding” in theDocker terminology). Also, the $SGE_ROOT must always be available inside the containerto allow Altair Grid Engine to work properly. Furthermore, Altair Grid Engine automaticallydetects other directories that have to be available inside the container in order to allow thejob to run.
Sharing and binding these directories is done automatically by Altair Grid Engine. Thesedirectories are always bound to a subdirectory of /uge_mnt inside the container, and theyare bound by sharing each the top level directory to a direct subdirectory of the ‘/uge_mnt’bind point with the same name. I.e.:

• If $SGE_ROOT is e.g. /opt/uge, then the top directory /opt is bound to /uge_mnt/optinside the container.• If the execution daemon spool directory is e.g. /var/spool/uge, then the top directory
/var is bound to /uge_mnt/var inside the container.

The top level directory and not the specific directory itself is bound because Docker wasnot able to bind a directory to a bound directory in older versions, which would be the case
Grid Engine Users’s Guide v 8.7.0 80

7 Other Job Types

if both /opt:/uge_mnt/opt and /opt/uge:/uge_mnt/opt/uge would be bound automatically- then the uge subdirectory would be bound to the already bound /uge_mnt/opt directory,which wasn’t allowed. This behaviour could be changed in future versions of UGE.
There are other directories that are bound automatically inside the container, e.g. the jobusers home directory to allow the output and error file of the job to written to their defaultlocation. If the paths specified with the -o and -e switch point to different directories, theseare bound into the container instead. This automatic directory binding applies to all direc-tories that are defined explicitly or implicitly by specifying or omitting Altair Grid Engineswitches.
Altair Grid Engine cannot detect which paths the job itself uses, even if they are specifiedas arguments to the job script. For this, paths must be bound manually, using the -xd -vswitch, which takes the argument HOST-DIR:CONTAINER-DIR (see the submit(1) man page fordetails).
Docker disallows to bind two different directories to the same bind point inside the con-tainer. Among all the automatic and manual directory binds, Altair Grid Engine ensures adirectory is not bound two times to the same top directory inside of the container. The userdoes not have to take care of this.
Paths that are automatically bound by Altair Grid Engine are also automatically mapped,i.e. the Altair Grid Engine components running inside the container use the bound pathsinstead of the original ones. But a path in an argument to the job cannot be mapped auto-matically, this must be done by the job submitter or the job script. E.g. if a job is submittedusing this command line:
$ qsub -l docker,docker_images="*centos:latest*" -xd "-v /scratch:/container_scratch"
my_job.sh /scratch/data

it will notwork if the my_job.sh script does notmap thedata path to /container_scratch/dataor the submit command line is changed to specify /container_scratch/data as the jobargument.
Furthermore, the job user will probably not exists inside the container. While the wholecontainer is started under the job users ID, the job user itself is not configured inside thecontainer, so the home directory cannot be estimated and must be set explicitly.
If the job is binary, i.e. was submitted with the -b y switch, the binary is started in the shellthat is defined in the configuration of the queue the job runs in. Because this is /bin/cshby default and the csh is not part of most Docker images, this shell must be overwritten bythe -S switch - /bin/sh usually exists everywhere.
Here are some examples for jobs that use the Docker integration and specify the job binaryor job script to start:

• $ qsub -l docker,docker_images="*centos:latest*" -xd "-v /scratch:/data"
my_job.sh /data/input.txtThis job requests to be started in a Docker container that is created from the “cen-tos:latest” image, the /scratch directory to be bound inside the container to the
/data directory. The job script is transferred from the submit host to the executionhost, the argument to the job script uses the path as it will be called inside of thecontainer.

Grid Engine Users’s Guide v 8.7.0 81

7 Other Job Types

• $ qsub -l docker,docker_images="*ubuntu:14.04*" -b y -S /bin/sh hostnameThis job requests to be started in a Docker container that is created from the“ubuntu:14.04” image, it is a binary job which means the job binary or script alreadyexists on the execution host inside the container. Because the binary would be startedinside the shell configured in the queue, which does not exist in the container, theBourne shell is defined to be used instead.
• $ qrsh -l docker,docker_images="*centos:7*" ls -la /uge_mntThis job is an interactive job, it requests to be started in a Docker container that is cre-ated from the “centos:7” image. By default, an interactive job is a binary job, i.e. the jobscript or binary is expected to already exist on the execution host inside the container.It lists the automatically bound directories.

In order to submit a job that starts the Docker container itself like a binary, i.e. uses the
ENTRYPOINT defined in the Docker image instead of a job script, the keyword NONEmust beused as job script and the job must be a binary job, e.g.:
$ qsub -l docker,docker_images="*hello-world:latest*" -b y NONE arg1 arg2 argn

These jobs are called “autostart Docker jobs”. For such jobs, the following limitations apply:
• Only sequential batch jobs are supported, but neither interactive jobs submitted by
qrsh or qlogin nor parallel jobs are supported.• Stdin cannot be redirected to the job.• The job can only be suspended, unsuspended and killed, but no other signals can besent to the job.• If the Docker daemon is stopped or dies, Altair Grid Engine has no means to controlthe job.• In principle it is possible to provide arguments to this kind of jobs, but the argumentswill be available to the script or binary inside the Docker container only if the Dockerimage was created in a way that allows this. Whether the Docker image is suitable canbe tested by manually starting
$ docker run -it image:latest arg1 arg2 arg3on the execution host. If the script or binary inside the Docker container gets thesearguments, it should also get them in a Altair Grid Engine job. If there are argumentsspecified in the ENTRYPOINT of the Docker image, the arguments specified on the com-mand line will be appended to them.

Whathappensunder thehood Altair Grid Engine directly communicateswith theDockerdaemon using the Docker Remote API and does not use the docker command line client.The Remote API is a stateless request-response interface, similar to a web server.
If Altair Grid Engine decides to start a job on a certain execution host in a certain Docker con-tainer, it fills requests forms with information and sends them to the Docker daemon. TheDocker daemon tries to fulfill each request and responds to each request. Each responsecontains a status (success or failure) and some responses additionally contain data or anerror message.
To start a normal Docker job, Altair Grid Engine sends these requests to theDocker daemon:

Grid Engine Users’s Guide v 8.7.0 82

7 Other Job Types

• A request to create a Docker container from the specified Docker image, with the startuser being the job user, the start application being the sge_container_shepherd, thepath bindings and so on.• A request to give the Docker container its name containing the job ID.• A request to start the Docker container.
The Docker daemon does this to fulfill the requests:

• To create a Docker container, it extracts the Docker image to a subdirectory andwritesthe specified information to a specific file.• The container name is changed in the internal database of the Docker daemon.• To start the Docker container, the Docker daemon sets up the environment, definesthe extracted directory to be the root directory for the process to start and executesthe sge_container_shepherd, which acts as init process of the container, i.e. there isno extra process which “is” the container - the container “is” the application that getsstarted, which is the sge_container_shepherd for this kind of jobs.
The sge_container_shepherd then starts the job with all of its arguments, exactly like thenormal sge_shepherd does with normal jobs on the “real” host. If a signal is to be sentto the job, the execution daemon talks to the sge_container_shepherd via a pipe. The
sge_container_shepherd sends the signal to the job.
If Altair Grid Engine decides to start a Docker job that uses the keyword “NONE” as job script,it does the same as above, but the start application is the one defined in the Docker imageand is not explicitly set. If the container is created, there is no Altair Grid Engine componentrunning in it, so Altair Grid Engine has no direct control over the container. Instead, it mustsend a request to the Docker daemon in order to send signals to the job, in order to getonline usage, and so on.
7.8.2 Running a parallel Job in Docker containers

For tightly integrated parallel jobs, all tasks except for the master task are started in sepa-rateDocker containers that are created from the sameDocker image. For loosely integratedparallel jobs, no task is started in a Docker container by Altair Grid Engine, because AltairGrid Engine has no control over the slave tasks, i.e. submitting loosely integrated parallelDocker jobs does not make sense.
Like any normal parallel job, the master task is started like a sequential job that requestsa parallel environment with an amount of slots. Parallel Docker jobs additionally have toprovide the Docker specific requests:
$ qsub -l docker,docker_images="*centos:latest*" -xd "-v /home:home" -l /home/jdoe
-j y -pe parallel_env 3 master_job.sh

The master task is submitted to a “physical” host which is known to Altair Grid Engine but itis started inside a Docker container, which has a random name.
The slave tasks are just submitted using the usual -inherit switch which requires two en-vironment variables set in the submit shell:
$ export JOB_ID=17

Grid Engine Users’s Guide v 8.7.0 83

7 Other Job Types

$ export SGE_TASK_ID=undefined
$ qrsh -inherit slave_host slave_job.sh

All Docker specific request are inherited from the master task and may not be provided inthe qrsh command line!
The slave task is submitted to the slave_host, which is a “physical” host and is known toAltair Grid Engine. The task itself then is started inside a Docker container which has arandom name and is not known to Altair Grid Engine.
Usually the master task of that parallel job runs the qrsh -inherit, which would not workfor a master task running inside a Docker container, because this Docker container is notknown as an execution host to the sge_qmaster and the execution daemons on the execu-tion hosts.
To solve this problem, the Administrator can declare a RSMAP complex that defines on eachexecution host as many container hostnames as there are slots defined. The job thenmustrequest one element per PE task of this RSMAP complex and the per_pe_task_prologmustbe used to set the hostname and IP of the Docker container.
E.g.: * the Administrator declares an RSMAP complex “cont_hosts” * on executionhost “hostA”, defines the complex values “cont_hosts=2(hostA_cont1 hostA_cont2)* on execution host”hostB“, defines the complex values”cont_hosts=2(hostB_cont1hostB_cont2) * the job has to request one element of this complex per task: $ qsub
-l cont_hosts=1,docker,docker_images="*centos:latest*" -xd "-v /home:home" -l
/home/jdoe -j y -pe parallel_env 3 master_job.sh Assume the master taskis scheduled to “hostA”, both slave tasks are scheduled to “hostB”. The master task gets theRSMAP value “hostA_cont2” assigned, the slave tasks get “hostB_cont1” and “hostB_cont2”assigned, so the “per_pe_task_prolog” can set the hostnames and IPs accordingly. Withhaving the hostnames and IPs registered in DNS, all components now can talk to eachother.
7.8.3 Running MPI jobs in Docker containers

If MPI is used for the communication between the master and slave tasks, a file thatcontains the hostnames can be written automatically be Altair Grid Engine. If the “ex-ecd_params” value “CONTAINER_PE_HOSTFILE_COMPLEX” is set to the name of the RSMAPcomplex used to select the container hostnames, Altair Grid Engine automatically writesa “container_pe_hostfile” which is compatible to the normal “pe_hostfile”, but contains allcontainer names selected for this job. The “prolog” can be used to replace the normal“pe_hostfile” with the “container_pe_hostfile” in case this shall be used.
7.8.4 Running an array Job in Docker containers

Each task of an array job is started in a different Docker container, but all Docker containersare created from the same Docker image.

Grid Engine Users’s Guide v 8.7.0 84

7 Other Job Types

7.8.5 Running a Job in a Docker image that is not available locally

Docker allows not only to use locally available images, but also to automatically downloadimages from a repository. Because of performance considerations, this is sometimes notwanted for Altair Grid Engine jobs, so usually a job is scheduled only to an execution hostthat already provides the requested Docker image. If a job has to run in an image that isnot yet available, submitting it with a soft request for that image triggers the download ofthis image. This means, for a job like this one:
$ qsub -l docker -soft -l docker_images="*fedora:21*" -o /dev/null -j y myjob.sh

Altair Grid Engine will first search for a execution host that fulfills all requests, i.e. that al-ready has theDocker image fedora:21 locally available. If there is no suchhost in the cluster,the job will be scheduled to any execution host that fulfills the docker request and will tellthe Docker daemon to download the image and the start the container.
7.8.6 Using placeholders to dynamically define Docker options

Since Altair Grid Engine 8.5.0, placeholders are allowed in sub-options of the “-xd” optionon the submit command line, sge_request files, job scripts, job classes and job submissionverifier. These placeholders are resolved by corresponding elements of specific RSMAPcomplexes the Scheduler selects for the tasks of a job.
The format of these placeholders is:
<placeholder> := ${ <complex_name> "(" <index> ")" }

where complex_name is the name of the corresponding RSMAP complex and index is theindex of the element the Scheduler selects from the RSMAP for this job, starting with 0.
E.g.:If a resource map defines these values on a host: gpu_map=4(0 1 2 3)this qsub command line is used:(Note the “\$” to keep the shell from trying to resolve that variable)
qsub -l docker,docker_images="*some_image*",gpu_map=2

-xd "--device=/dev/gpu\${gpu_map(0)}:/dev/gpu0,
--device=/dev/gpu\${gpu_map(1)}:/dev/gpu1" ...

and the scheduler selects the elements “1” and “3” from the resource map, the commandline is resolved to
qsub -l docker,docker_images"*some_image*",gpu_map=2

-xd "--device=/dev/gpu1:/dev/gpu0,
--device=/dev/gpu3:/dev/gpu1"...

which means the physical GPUs “gpu1” and “gpu3” are mapped to the virtual GPUs “gpu0”and “gpu1” inside the container and at the same time are exclusively reserved for the cur-rent job among all Altair Grid Engine jobs.

Grid Engine Users’s Guide v 8.7.0 85

8 Getting a Consistent View onto the System by Using Sessions

7.8.7 Support for nvidia-docker 2.0

NVIDIA provides the version 2.0 of their Docker Container Runtime which allows to accessGPUs from within Docker containers. Altair Grid Engine now supports using this ContainerRuntime.
Provided the NVIDIA Docker Container Runtime is installed properly on an execution host, ajob thatwants to use aNVIDIAGPUmust tell Docker to use theNVIDIA Runtimeby specifyingthe -xd "--runtime=nvidia" switch on the qsub or qrsh command line. In order to selecta specific GPU, the environment variable NVIDIA_VISIBLE_DEVICES must be set to for thewhole container by specifying it with the -xd "--env NVIDIA_VISIBLE_DEVICES=0" switch.
Altair Grid Engine also supports the Docker run option gpus to select GPUs for the con-tainer. The switch accepts either all to select all GPUs on the host, any integer > 0 to selecta specific amount of GPUs or the parameter device followed by a list of device ids to se-lect specific GPUs, e.g. -xd "--gpus=device=\"0,1\"". Please note that -xd "--gpus=..."requires Docker API version 1.40 or newer.

8 Getting a Consistent View onto the System by Using
Sessions

When Altair Grid Engine client commands interact with Altair Grid Engine server compo-nents then this is done by using an interface named GDI (Grid Engine Data Interface). Thisinterface is used to send client requests to the Altair Grid Engine system that are then han-dled within the server component and answered by a response message that contains theresult for the client request.
This GDI interface is also used for internal Altair Grid Engine communication between com-ponents running on execution hosts as well as for internal communication between com-ponents within the sge_master component itself.
GDI requests can be divided into two categories: Requests that will change the configu-ration/state of the Altair Grid Engine system (read-write-requests) and requests that willgather information to display the configuration/state of the Altair Grid Engine system (read-only-requests).
Altair Grid Engine 8.2 has been redesigned so that read-write-requests and read-only-requests can be executed completely independently from each other. Furthermore up to64 read-only requests can work in parallel which is not possible in Sun Grid Engine, OracleGrid Engine and other open source versions of Grid Engine. This ensures faster responsetimes for all requests and has a huge positive impact on the cluster throughput.
The drawback of this approach is that GDI read-only-requests might not see the outcomeof recently executed read-write requests in certain situations. E.g. it might happen that auser submits a job (read-write-request) and immediately does a qstat -j (read-only-request)which responds with an error which says that the previously created job does not exist.
In some cases such behavior may cause problems and it is desired that requests should beexecuted in sequence and for this reason GDI sessions have been introduced that guaran-tee a consistent view onto the Altair Grid Engine system. Internally read-only requests that

Grid Engine Users’s Guide v 8.7.0 86

8 Getting a Consistent View onto the System by Using Sessions

are executed within the control of a session are delayed until they can see all changes thathave happened previously.

8.1 Communication with Altair Grid Engine without using Sessions

Altair Grid Engine can be installed in a way so that no sessions are required to get a con-sistent view onto the Altair Grid Engine system. In that mode the sge_qmaster process ofAltair Grid Engine 8.2 behaves the same way as in prior versions. All commands are exe-cuted in the same sequence as they are received by sge_qmaster and during processing ofeach of those requests all previous activities are immediately visible without the need touse sessions.
To find out if sge_qmaster is running in this mode execute following command:

> qconf -stl
reader000
reader001
reader002
reader003
reader004
...

The output of the qconf -stl command will show the active threads in the sge_qmasterprocess. If there are reader-threads active then sessions are required. If there is no line inthe output that starts with reader then sessions are not required.

8.2 Using sessions to communicate with the system

Sessions are configuration objects available since Altair Grid Engine 8.2. They are requiredto get a consistent view onto the Altair Grid Engine when read-only-threads where activatedduring the installation of the sge_qmaster process. The use of sessions might slow downprocesses within sge_qmaster slightly therefore sessions can only be created, modified anddeleted by managers or users that are members of the sessionusers access control list.
Following session related commands are available:

Table 32: TABLE: Session Commands
Command Value Specification
qconf -ssil Shows all active sessions including ownershipand end time.
qconf -ssi <session_id> Shows details of an existing session object.
qconf -msi <session_id> Opens an editor and lets the user configurethe session.
qconf -Msi <session_file> Modifies the session using new parametersfrom session_file
qconf -asi Adds a new session object

Grid Engine Users’s Guide v 8.7.0 87

8 Getting a Consistent View onto the System by Using Sessions

Command Value Specification
qconf -Asi <session_file> Adds a new session using parameter valuesfrom session_file
qconf -csi Creates a new session with defaultparameters.
qconf -dsi <session_id> Deletes the session with the given

session_id.

The following list of parameters specifies the session configuration:
Table 33: TABLE: Session Parameters

Parameter Value Specification
session_id The session ID of a session. For sessions that should be created the valuefor this attribute has to be NONE so that the sge_qmaster process canassign a new unique session ID.owner User name of the user that owns the session. If NONE is specified asusername during the creation of a new session then the executing userof the configuration command will be the owner of that session.Only managers and the session owner are allowed to modify or to deletean existing session and if a session gets created by root or a manageraccount on behalf of a regular user then that user should be a memberof the sessionusers access control list.duration The duration influences the lifetime of a session. Lifetime of a sessionbegins when the session is created and it ends when the session is notused for the specified amount of time defined by the duration attribute.Lifetime of a session is automatically increased by adding duration to the

end_time of that session when it is used.The default duration of a session is 900 seconds if this is not specifiedotherwise in the qmaster_param namedgdi_request_session_timeout‘.The sge_qmaster process tries to find sessions where the lifetime endedevery 15 minutes and it will delete those sessions automatically.Although unused sessions will be deleted automatically it isrecommended to delete sessions manually using the qconf -dsicommand once a session is not needed anymore.start_time Time when the session was created. Start_time of a session cannot bespecified. It is shown with qconf -ssi.end_time Possible end time of a session. After creation the end_time of a session isset to start_time plus duration. End_time is moved forward when thesession is used so that it still remains valid for the amount of timespecified by duration after use.If the session was not used then it is tagged for deletion. The
sge_qmaster process tries to find unused sessions every 15 minutes andit will delete those sessions automatically. Although unused sessions willbe deleted automatically it is recommended to delete sessions manuallyusing the qconf -dsi command when a session is not needed anymore.

Grid Engine Users’s Guide v 8.7.0 88

9 Submission, Monitoring and Control via an API

Parameter Value Specification
The end_time of a session is shown by the commands qconf -ssi and
-ssil.

Sessions can be used with the -si switch of all client commands (like qsub, qstat, qhost . . .).Requests sent by the corresponding client to the sge_qmaster daemon will be done as partof the specified session. If the switch is omitted or if NONE is specified as session_id thensuch requests will be executed outside the control of a session.
Here is an example that shows the use of a session:

> set session_id=`qconf -csi`
> set job_id=`qsub -terse -si $session_id -b y sleep 120`
> qstat -si $session_id -j $job_id
> qconf -dsi $session_id

During job submission a session that was previously created is specified. Due to this itis guaranteed that the qstat command that refers to the same session is able to see thepreviously created job. After use the session is deleted.

9 Submission, Monitoring and Control via an API

Using the API is not supported on Windows hosts.
Note

9.1 The Distributed Resource Management Application API (DRMAA)

The Distributed Resource Management Application API is the industry-leading open stan-dard of theOpenGrid Forum www.ogf.orgDRMAAworking group www.drmaa.org for access-ing DRMS. The goal of the API is to provide an external interface to applications for basictasks, like job submission, job monitoring and job control. Since this standard is adaptedbymost DRMS vendors it offers a very high investment protection, when developing a DRMaware software application, because it can be easily transferred to another DRM. Altair GridEngine supports all DRMAA concepts, which allows for themovement of existing DRMAA ap-plications from different DRM vendors.

9.2 Basic DRMAA Concepts

DRMAA version 1.0 specifies a set of functions and concepts. Each DRMAA applicationmustcontain an initialization and disengagement function which must be called at the beginningand at the end respectively. In order to do something useful a new DRMAA sessionmust becreated or one existing must be re-opened. When re-opening a DRMAA session, the job IDs

Grid Engine Users’s Guide v 8.7.0 89

www.ogf.org
www.drmaa.org

9 Submission, Monitoring and Control via an API

of the session can be reused in order to obtain the job status and gain job control. In orderto submit jobs, a standard job template must be allocated and filled out according to needswith the job name and the corresponding parameters. This job template than can then besubmitted with a job submission routine. There are two job submission routines specified:One for individual jobs and one for array jobs. A job can be monitored and controlled(e.g. holding, releasing, suspending, resuming) once the job is complete and the exit statuscan be checked. Additionally DRMAA specifies a set of error codes. In order to exploitadditional functionality, which is only available in Altair Grid Engine, the standard will allowthis with either the native specification functionality or with job categories.
9.3 Supported DRMAA Versions and Language Bindings

Altair Grid Engine supports currently the DRMAA v1.0 standard and is shipped with a fullyfeatured DRMAA C binding v1.0 and a DRMAA Java binding v1.0. The standards can bedownloaded at www.drmaa.org.
9.4 When to Use DRMAA

Writing applications with DRMAA has several advantages: High job submission throughputwith Altair Grid Engine, the defined workflow is independent from underlying DRM, it ismuch easier to use in programming languages like C or Java, and it is a widely known andadapted standard backed by an experienced community.
9.5 Environment Variable Influences

There are environment variables that can change DRMAA library behavior:
SGE_DRMAA_ENABLE_ERROR_STATE
When this environment variable is set, then jobs that are submitted with drmaa_run_job()or drmaa_run_bulk_jobs() will change into error state when either during the job start orduring the execution of the job an error occurs. Normally DRMAA jobs will not switch intoerror state when something fails.
9.6 Examples

9.6.1 Building a DRMAA Application with C**

Compiling, Linking and Running the C Code DRMAA Example
In order to compile a DRMAA application, the drmaa.hmust include the file and the DRMAAlibrarymust be available. The drmaa.h file can be found in the $SGE_ROOT/include directoryand the libraries are installed in $SGE_ROOT/lib/$ARCH.
In the following example the root installation directory ($SGE_ROOT) is /opt/uge870 and thearchitecture is lx-amd64.
> gcc -I/opt/uge870/include -L/opt/uge870/lib/lx-amd64 -o yourdrmaaapp yourdrmaaapp.c -ldrmaa

Grid Engine Users’s Guide v 8.7.0 90

www.drmaa.org

9 Submission, Monitoring and Control via an API

In order to run yourdrmaaapp the Altair Grid Engine environment must be present and thepath to the shared DRMAA library must be set.
> export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/uge870/lib/lx-amd64
> ./yourdrmaaapp

Job Submission, Waiting and Getting the Exit Status of the Job

In the following example a job session is initially opened with drmaa_init(). The returncode of the all calls indicate the success of a function (DRMAA_ERRNO_SUCCESS) or ifan error has occurred. In the case of an error, the error string with the correspondingmessage is returned. In order to submit a job, a job template must be allocated withdrmaa_allocate_job_template() and the DRMAA_REMOTE_COMMAND parameters must beset. After a successful job submission with drmaa_run_job() the application waits until thejob is scheduled and eventually finished. Then the exit code of the job is accessed andprinted before the job session is closed by drmaa_exit.
000 #include <stdio.h>
001 #include "drmaa.h"
002
003 int main(int argc, char **argv) {
004
005 /* err contains the return code of the called functions */
006 int err = 0;
007
008 /* allocate a string with the DRMAA string buffer length */
009 char errorstr[DRMAA_ERROR_STRING_BUFFER];
010
011 /* allocate a buffer for the job name */
012 char jobid[DRMAA_JOBNAME_BUFFER];
013
014 /* pointer to a job template */
015 drmaa_job_template_t *job_template = NULL;
016
017 /* DRMAA status of a job */
018 int status = 0;
019
020 /* if job exited normally */
021 int exited = 0;
022
023 /* exit code of the job */
024 int exitstatus = 0;
025
026 /* create a new DRMAA session */
027 err = drmaa_init(NULL, errorstr, DRMAA_ERROR_STRING_BUFFER);
028
029 /* test if the DRMAA session could be opened */
030 if (err != DRMAA_ERRNO_SUCCESS) {
031 printf("Unable to create a new DRMAA session: %s\n", errorstr);

Grid Engine Users’s Guide v 8.7.0 91

9 Submission, Monitoring and Control via an API

032 return err;
033 }
034
035 /* allocate a job template */
036 err = drmaa_allocate_job_template(&job_template, errorstr,
037 DRMAA_ERROR_STRING_BUFFER);
038
039 /* test if the DRMAA job template could be allocated */
040 if (err != DRMAA_ERRNO_SUCCESS) {
041 printf("Unable to allocate a new job template: %s\n", errorstr);
042 /* close the DRMAA session and exit */
043 err = drmaa_exit(errorstr, DRMAA_ERROR_STRING_BUFFER);
044 if (err != DRMAA_ERRNO_SUCCESS) {
045 printf("Unable to close DRMAA session: %s\n", errorstr);
046 }
047 return err;
048 }
050
051 /* specify the job */
052 err = drmaa_set_attribute(job_template, DRMAA_REMOTE_COMMAND, "./job.sh",
053 errorstr, DRMAA_ERROR_STRING_BUFFER);
054
055 if (err != DRMAA_ERRNO_SUCCESS) {
056 printf("Unable to set the remote command name: %s\n", errorstr);
057 /* close the DRMAA session and exit */
058 err = drmaa_exit(errorstr, DRMAA_ERROR_STRING_BUFFER);
059 if (err != DRMAA_ERRNO_SUCCESS) {
060 printf("Unable to close DRMAA session: %s\n", errorstr);
061 }
062 return err;
063 }
064
065 /* submit the job */
066 err = drmaa_run_job(jobid, DRMAA_JOBNAME_BUFFER, job_template, errorstr,
067 DRMAA_ERROR_STRING_BUFFER);
068
069 /* wait for the job */
070 err = drmaa_wait(jobid, NULL, 0, &status, DRMAA_TIMEOUT_WAIT_FOREVER,
071 NULL, errorstr, DRMAA_ERROR_STRING_BUFFER);
072
073 if (err != DRMAA_ERRNO_SUCCESS) {
074 printf("Unable to wait for the job: %s\n", errorstr);
075 /* close the DRMAA session and exit */
076 err = drmaa_exit(errorstr, DRMAA_ERROR_STRING_BUFFER);
077 if (err != DRMAA_ERRNO_SUCCESS) {
078 printf("Unable to close DRMAA session: %s\n", errorstr);
079 }
080 return err;
081 }

Grid Engine Users’s Guide v 8.7.0 92

9 Submission, Monitoring and Control via an API

082
083 /* print the exit status of the job if terminated normally (and don't
084 * check a function error) */
085 drmaa_wifexited(&exited, status, NULL, 0);
086
087 if (exited == 1) {
088 drmaa_wexitstatus(&exitstatus, status, NULL, 0);
089 printf("Exit status of the submitted job: %d\n", exitstatus);
090 }
091
092 /* free the job template */
093 err = drmaa_delete_job_template(job_template, errorstr, DRMAA_ERROR_STRING_BUFFER);
094
095 if (err != DRMAA_ERRNO_SUCCESS) {
096 printf("Unable to delete the job template: %s\n", errorstr);
097 /* close the DRMAA session and exit */
098 err = drmaa_exit(errorstr, DRMAA_ERROR_STRING_BUFFER);
099 if (err != DRMAA_ERRNO_SUCCESS) {
100 printf("Unable to close DRMAA session: %s\n", errorstr);
101 }
102 return err;
103 }
104
105 /* close the DRMAA session and exit */
106 err = drmaa_exit(errorstr, DRMAA_ERROR_STRING_BUFFER);
107 if (err != DRMAA_ERRNO_SUCCESS) {
108 printf("Unable to close DRMAA session: %s\n", errorstr);
109 return err;
110 }
111
112 return 0;
113 }

9.6.2 Building a DRMAA Application with Java

When writing a Java DRMAA application it must be taken into account that the Java DRMAAlibrary internally is based on the C DRMAA implementation. The implication is that JavaDRMAA is fast, but this native code dependency must be handled properly. The DRMAAapplication must be run on a submission host with an enabled Altair Grid Engine environ-ment.
Compiling and Running the Java Code DRMAA Example

In order to compile a Java DRMAA application the Java CLASSPATH variable must pointto $SGE_ROOT/drmaa/lib/drmaa.jar. Alternatively the -cp or -classpath parameter can bepassed to the Java compiler at the time of compilation.
> javac -cp $SGE_ROOT/drmaa/lib/drmaa.jar Sample.java

Grid Engine Users’s Guide v 8.7.0 93

9 Submission, Monitoring and Control via an API

To run the application the native code library (libdrmaa.so) must be available in theLD_LIBRARY_PATH environment variable. In this example $SGE_ROOT is expected to be/opt/uge870.
> export LD_LIBRARY_PATH=LD_LIBRARY_PATH:/opt/uge870/drmaa/lib/linux
> java -cp $SGE_ROOT/drmaa/lib/drmaa.jar:./ Sample

Job Submission, Waiting and Getting the Exit Status of the Job

The following example has the same behaviour as the C example in the section above. Firsta DRMAA job session is created through a factory method (line 19-22). A new session isopened with the init() call (line 23). After a job template is allocated (line 26) and the remotecommand parameter (line 29) and the job argument (line 32) is set accordingly, the waitmethod does not terminate as long the job runs (line 39). Finally the exit status of the jobis checked (line 41-47), the job template is freed (line 50) and the session is closed (line 53).
000 import java.util.Collections;
001 import org.ggf.drmaa.*;
002
003 public class Sample {
004
005 public static void main(String[] args) {
006
007 Sample sample = new Sample();
008
009 try {
010 sample.example1();
011 } catch (DrmaaException exception) {
012 /* something went wrong */
013 System.out.println("DRMAA Error: " + exception.getMessage());
014 }
015 }
016
017 public void example1() throws DrmaaException {
018 /* get the class, which is needed for creating a session */
019 SessionFactory factory = SessionFactory.getFactory();
020
021 /* create a new session */
022 Session s = factory.getSession();
023 s.init(null);
024
025 /* create a new job template */
026 JobTemplate jobTemplate = s.createJobTemplate();
027
028 /* set "sample.sh" as job script */
029 jobTemplate.setRemoteCommand("/path/to/your/job.sh");
030
031 /* set an additional argument */
032 jobTemplate.setArgs(Collections.singletonList("myarg"));

Grid Engine Users’s Guide v 8.7.0 94

10 Advanced Concepts

033
034 /* submit the job */
035 String jobid = s.runJob(jobTemplate);
036 System.out.println("The job ID is: " + jobid);
037
038 /* wait for the job */
039 JobInfo status = s.wait(jobid, Session.TIMEOUT_WAIT_FOREVER);
040
041 /* check if job exited (and was not aborted) */
042 if (status.hasExited() == true) {
043 System.out.println("The exit code of the job was: "
044 + status.getExitStatus());
045 } else {
046 System.out.println("The job didn't finish normally.");
047 }
048
049 /* delete the job template */
050 s.deleteJobTemplate(jobTemplate);
051
052 /* close DRMAA session */
053 s.exit();
054 }
055
056 }

9.7 Further Information

Java DRMAA related information can be found in the doc directory (HTML format). Fur-ther information about DRMAA specific attributes can be found in the DRMAA related manpages:
drmaa_allocate_job_template, drmaa_get_next_attr_value, drmaa_misc, drmaa_synchronize,drmaa_attributes, drmaa_get_next_job_id, drmaa_release_attr_names, drmaa_version, dr-maa_control, drmaa_get_num_attr_names, drmaa_release_attr_values, drmaa_wait,drmaa_delete_job_template, drmaa_get_num_attr_values, drmaa_release_job_ids, dr-maa_wcoredump, drmaa_exit, drmaa_get_num_job_ids, drmaa_run_bulk_jobs, dr-maa_wexitstatus, drmaa_get_attribute, drmaa_get_vector_attribute, drmaa_run_job,drmaa_wifaborted, drmaa_get_attribute_names, drmaa_get_vector_attribute_names,drmaa_session, drmaa_wifexited, drmaa_get_contact,drmaa_init, drmaa_set_attribute, dr-maa_wifsignaled, drmaa_get_DRMAA_implementation, drmaa_jobcontrol, drmaa_set_vector_attribute,drmaa_wtermsig, drmaa_get_DRM_system, drmaa_job_ps, drmaa_strerror, jsv_script_interface,drmaa_get_next_attr_name, drmaa_jobtemplate, drmaa_submit

10 Advanced Concepts

Besides the rich set of basic functionality discussed in the previous sections, Altair GridEngine offers several more sophisticated concepts at time of job submission and during job

Grid Engine Users’s Guide v 8.7.0 95

10 Advanced Concepts

execution. This chapter describes such functionality, which becomes important for moreadvanced users.

10.1 Job Dependencies

In many cases the jobs, which are submitted with Altair Grid Engine are not self-contained.Those jobs are usually arranged in a kind of workflow with more or less complex job de-pendencies. Such workflows can be mapped to Altair Grid Engine with the submission pa-rameter hold_jid <jobid list>. The <jobid list> contains one or a comma separated list ofids of existing jobs of which the submitted job is waiting for before it can be scheduled. Inorder get the job IDs, submit the jobs with a name (-N <name>) and use the name as ID.Alternatively the qsub parameter -terse can be used, which transforms the command lineresult of qsub so that only the job id is returned. This makes it very simple to use withinscripts.
10.1.1 Examples

In the following examples, basic workflow control patterns (see www.workflowpatterns.com)are mapped into a Altair Grid Engine job workflow.
Sequence Pattern

The most simple workflow pattern is the sequence pattern. It is used when a bunch of jobmust be executed in a pre-defined order. With Altair Grid Engine it is possible to submit alljobs at once but the order is still guaranteed.

qsub -b y /bin/sleep 60
Your job 4 ("sleep") has been submitted
qsub -b y -hold_jid 4 /bin/sleep 60
Your job 5 ("sleep") has been submitted
qsub -b y -hold_jid 5 /bin/sleep 60
Your job 6 ("sleep") has been submitted

> qstat
job-ID prior name user state submit/start at queue slots ja- task-ID

4 0.55500 sleep daniel r 03/01/2011 15:16:50 all.q@host1 1
5 0.00000 sleep daniel hqw 03/01/2011 15:17:52 1
6 0.00000 sleep daniel hqw 03/01/2011 15:17:57 1

Parallel Split/Fork Pattern

Grid Engine Users’s Guide v 8.7.0 96

www.workflowpatterns.com

10 Advanced Concepts

The fork pattern is used when a job sequence involves tasks that are executed in parallel.In this case two or more jobs depend on just one job, meaning they are scheduled after thejob is complete. In Altair Grid Engine , this is mapped through setting the hold job ID valueof multiple jobs to the same job.

qsub -terse -b y /bin/sleep 60
4
qsub -b y -hold_jid 4 /bin/sleep 60
Your job 5 ("sleep") has been submitted
qsub -b y -hold_jid 4 /bin/sleep 60
Your job 6 ("sleep") has been submitted

> qstat
job-ID prior name user state submit/start at queue slots ja-task-ID

4 0.55500 sleep daniel r 03/01/2011 16:00:50 all.q@host1 1
5 0.00000 sleep daniel hqw 03/01/2011 16:00:58 1
6 0.00000 sleep daniel hqw 03/01/2011 16:01:00 1

> qstat
job-ID prior name user state submit/start at queue slots ja-task-ID

5 0.00000 sleep daniel r 03/01/2011 16:00:58 1
6 0.00000 sleep daniel r 03/01/2011 16:01:00 1

In this example job 5 and 6 depending from job 4.
After job 4 finishes both jobs are scheduled within the same time.
Synchronization Pattern

With the synchronization pattern, a job starts (is scheduled) when all dependencies arefulfilled, i.e. that all of the waiting jobs have completed. It is usually used after parallelsections induced by the parallel split/fork pattern or when a job is one which finalizes thework of multiple jobs (post processing).

Grid Engine Users’s Guide v 8.7.0 97

10 Advanced Concepts

qsub -b y /bin/sleep 60
Your job 4 ("sleep") has been submitted
qsub -b y /bin/sleep 120
Your job 5 ("sleep") has been submitted
qsub -b y -hold_jid 4,5 /bin/sleep 60
Your job 6 ("sleep") has been submitted

> qstat
job-ID prior name user state submit/start at queue slots ja-task-ID
--

4 0.55500 sleep daniel r 03/01/2011 16:24:50 all.q@host1 1
5 0.00000 sleep daniel r 03/01/2011 16:24:54 all.q@host2 1
6 0.00000 sleep daniel hqw 03/01/2011 16:24:57 1

> qstat
job-ID prior name user state submit/start at queue slots ja-task-ID

5 0.00000 sleep daniel r 03/01/2011 16:24:54 all.q@host2 1
6 0.00000 sleep daniel hqw 03/01/2011 16:24:57 1

In this example the job 6 depends on two previously submitted jobs. The hold state of thejob is removed not before job 4 and job 5 ended.

10.2 Using Environment Variables

During job execution a number of environment variables are set fromAltair Grid Engine andare available for the executing script/binary. These variables contain information aboutAltair Grid Engine specific settings, job submission related information and other details.Additionally the user can specify at time of submission using the -v and -V parameter self-defined environment variables. While -v expects a list of variable=value pairs, which arepassed-through from job submission to the jobs environment, the -V parameter transfersall environment variables from the job submission context into the jobs execution context.
qrsh -v answer=42 myscript.csh

In myscript.csh $answer has the value 42.

Grid Engine Users’s Guide v 8.7.0 98

10 Advanced Concepts

setenv answer 42
qrsh -V myscript.csh

In myscript.csh $answer has the value 42.
In the following tables all Altair Grid Engine environment variables available during job ex-ecution are listed:

Table 34: Standard Job Environment Variables
Variable Name Semantic
SGE_ARCH The architecture of the host on which the job is running.SGE_BINARY_PATH The absolute path to the Altair Grid Engine binaries.SGE_JOB_SPOOL_DIR The directory where the Altair Grid Engine shepherd storesinformation about the job.SGE_JSV_TIMEOUT Timeout value (in seconds), when the client JSV will be restarted.SGE_STDERR_PATH The absolute path to the standard error file, in which Altair GridEngine writes errors about job execution.SGE_STDOUT_PATH The absolute path to the standard output file, in which AltairGrid Engine writes the output of the job.SGE_STDIN_PATH The absolute path to file, the job uses as standard input.ENVIRONMENT Altair Grid Engine fills in BATCH to identify it as an Altair GridEngine job submitted with qsub.HOME Path to the home directory of the user.HOSTNAME Name of the host on which the job is running.JOB_ID ID of the Altair Grid Engine job.JOB_NAME Name of the Altair Grid Engine job.JOB_SCRIPT Name of the script, which is currently executed.LOGNAME Login name of the user running the job on the execution host.PATH The default search path of the job.QUEUE The name of the queue in which the job is running.REQUEST The name of the job specified with the -N option.RESTARTED Indicates if the job was restarted (1) or if it is the first run (0).SHELL The login shell of the user running the job on the execution host.TMPDIR The absolute path to the temporary directory on the executionhost.TMP The absolute path to the temporary directory on the executionhost.TZ The timezone set from the execution daemon.USER The login name of the user running the job.

Table 35: Job Submission Related Job Environment Variables
Variable Name Semantic
SGE_O_HOME The home directory on the submission host.SGE_O_HOST The name of the host, on which the job is submitted.SGE_O_LOGNAME The login name of the job submitter.SGE_O_MAIL The mail directory of the job submitter.
Grid Engine Users’s Guide v 8.7.0 99

10 Advanced Concepts

Variable Name Semantic
SGE_O_PATH The search path variable of the job submitter.SGE_O_SHELL The shell of the job submitter.SGE_O_TZ The time zone of the job submitter.SGE_O_WORKDIR The working directory path of the job submitter.

Table 36: Parallel Jobs Related Job Environment Variables
NHOSTS The number of hosts on which this parallel job is executed.NQUEUES The number of queues on which this parallel job is executed.NSLOTS The number of slots this parallel job uses (1 for serial jobs).PE Only available for parallel jobs: The name of the parallelenvironment in which the job runs.PE_HOSTFILE Only available for parallel jobs: The absolute path to the pe_hostfile.

Table 37: Checkpointing Jobs Related Job Environment Vari-ables
SGE_CKPT_ENV Checkpointing jobs only: Selected checkpointing environment.SGE_CKPT_DIR Checkpointing jobs only: Path of the checkpointing interface.

Table 38: Array Jobs Related Job Environment Variables
SGE_TASK_ID The task number of the array job task the job represents. If thejob is not an array task, the variable contains undefined.SGE_TASK_FIRST The task number of the first array job task. If the job is not anarray task, the variable contains undefined.SGE_TASK_LAST The task number of the last array job task. If the job is not anarray task, the variable contains undefined.SGE_TASK_STEPSIZE Contains the step size of the array job. If the job is not an arraytask, the variable contains undefined.

10.3 Using the Job Context

Sometimes it is necessary that a jobmakes its internal state visible to qstat. This can bedonewith the job execution context. Job context variables can be initially set on job submissiontime with the -ac name=value parameter and altered/added and deleted during run-timewith qalter -ac or -dc switch. In the following example a job script makes the internal jobstate visible to the qstat client. The context_example.sh job script looks like the following:
00 #!/bin/sh
01
02 sleep 15

Grid Engine Users’s Guide v 8.7.0 100

10 Advanced Concepts

03
04 $SGE_BINARY_PATH/qalter -ac STATE=staging $JOB_ID
05
06 sleep 15
07
08 $SGE_BINARY_PATH/qalter -ac STATE=running $JOB_ID
09
10 sleep 15
11
12 $SGE_BINARY_PATH/qalter -ac STATE=finalizing $JOB_ID

Now the job with the context STATE=submitted is submitted and the context is filtered withthe grep command every 15 seconds.
> qsub -ac STATE=submitted context_example.sh
Your job 4 ("context_example.sh") has been submitted
> qstat -j 4 | grep context
context: STATE=submitted
> sleep 15
> qstat -j 4 | grep context
context: STATE=staging
> sleep 15
> qstat -j 4 | grep context
context: STATE=running
> sleep 15
> qstat -j 4 | grep context
context: STATE=finalizing

10.4 Transferring Data

A common way to transfer input and output data to and from the user application is touse a distributed or network file system like NFS. While this is easy to handle for the userapplications, the performance can be a bottleneck, especially when the data is accessedmultiple times sequentially. Hence Altair Grid Engine provides interfaces and environmentvariables for delegated file staging in order to support the user with hook points for access-ing and transferring data in different ways. In the following section these approaches fortransferring user data as well as their advantages and drawbacks are discussed.
10.4.1 Transferring Data within the Job Script

While the job script is transferred from the submission host to the execution host, the datathe job is working on remains unknown and therefore unreflected by the qsub command.If the necessary input and output files are only available through a slow network file systemon the execution host, they can be staged in and out from the job itself to the local host.In order to do so, Altair Grid Engine creates a local temporary directory for each job anddeletes it automatically after the job ends. The absolute path to this local directory is as$TMPDIR environment variable available during job run-time. In the following example an
Grid Engine Users’s Guide v 8.7.0 101

10 Advanced Concepts

I/O intensive job copies the input data set from the NFS exported home directory of theuser to the local directory and the results back to the home directory.
#!/bin/sh
...
copy the data from the exported home directory to the temporary directory
cp ~/files/largedataset.csv $TMPDIR/largedataset.csv
do data processing
...
copy results back to user home directory
cp $TMPDIR/results ~/results

10.4.2 Using Delegated File Staging in DRMAA Applications

The Altair Grid Engine DRMAA implementation comes with built-in support for file staging.The administratormust configure appropriate prolog and epilog scripts, which are executedbefore the DRMAA jobs starts and after the DRMAA job ends. Theses scripts can be config-ured in the global configuration (qconf -mconf), in the host configuration (qconf -mconfhostname), and in the queue configuration (qconf -mq queuename). The script that is ex-ecuted depends on the scripts which are configured. The host configuration overrides theglobal configuration and the queue configuration dominates the host configuration.
In order to make the job and epilog script job obvious, a set of variables is defined by AltairGrid Engine. These variables can be used in the configuration line, where the path to thepro- and epilog is defined.
: Delegated File Staging Variables
Example: Copy the DRMAA Job Output File

In the following example an epilog script is parameterized in a way that the DRMAA joboutput file is copied after the job ends to an user defined host and directory.
qconf -mconf
...
epilog /path/to/epilog.sh $fs_stdout_file_staging $fs_stdout_host $fs_stdout_path
$fs_stdout_tmp_path
...

The epilog.sh script looks like the following:
000 #!/bin/sh
001
002 doFileStaging=$1
003 outputHost=$2
004 outputHostPath=$3
005 tmpJobPath=$4
006
007 if ["x$doFileStaging" = "x1"]; then

Grid Engine Users’s Guide v 8.7.0 102

10 Advanced Concepts

008
009 # transfer file from execution host to host specified in DRMAA file
010 echo "Copy file $tmpJobPath to host $outputHost to $outputHostPath"
011 scp $tmpJobPath $outputHost:$outputHostPath
012
013 fi

Finally the DRMAA delegated file staging must be turned on:
qconf -mconf
...

delegated_file_staging true

After this is configured by the Altair Grid Engine administrator everything is the preparedfrom the Altair Grid Engine side. The DRMAA application now has to determine where tocopy the information of the output file in the job template. The following code exampleshows how to accomplish this with Java DRMAA.
/* enable transfer output file to host "yourhostname" in file "/tmp/JOBOUTPUT" */
jobTemplate.setOutputPath("yourhostname:/tmp/JOBOUTPUT");
/* disable transfer input file, enable transfer output file, disable transfer error file *
FileTransferMode mode = new FileTransferMode(false, true, false);
jobTemplate.setTransferFiles(mode);

Go back to the Altair Grid Engine Documentation main page.

10.5 Manual, Semi-Automatic and Automatic Preemption

Altair Grid Engine clusters can cope with different types of competing workloads. The con-figuration of the Altair Grid Engine scheduler determines how different workloads will bescheduled in the system. Policies can be combined to achive almost any type of scheduling.
In previous versions of Altair Grid Engine enforcing policies was sometimes difficult espe-cially when high priority jobs required resources of lower priority jobs that already con-sumed resources like slots, memory or licenses. In such cases slot-wise suspend on sub-ordinate queues was used to release resources in use by other jobs or reservation andadvance reservation functionality could be used to reserve resources for high priority jobswhile they are pending in the system.
Altair Grid Engine 8.3 (and above) now provides the functionality to release resources whenrequired resources are already in use. This can be done through preemption. This sec-tion describes preemptive scheduling as an addition to the Altair Grid Engine job handlingand scheduling that now makes it possible for high priority work to force the release ofresources in order to run in the cluster.

Grid Engine Users’s Guide v 8.7.0 103

10 Advanced Concepts

10.5.1 Preemption Terms

Following paragraphs describe a couple of terms that are used throughout this section.
Jobs which have high priority based on the configured policies can get the role of a pre-
emption consumer that can cause a preemption action to be performed for one or more run-ning jobs that have the role of a preemption provider. In general all those running jobs areconsidered as preemption provider where the priority is lower than that of the preemption
consumer.
There are different preemption actions available in Altair Grid Engine. What all of themhavein common is that they will make all or a subset of the bound resources of a preemption
provider available so that they can be used by one or more preemption consumer. Different
preemption actions differ in the way how bound resources are freed and how the Altair GridEngine system will make the bound resources available.
Preemption actions can be executed by Altair Grid Engine due to three different preemption
triggers. A preemption triggerwill define the time and has an influence on the chosen preemp-
tion action that is performed. In general preemption trigger can be manual, semi-automaticor automatic.
A preemption consumer that consumes resources provided through triggering a preemption
action has the role of a preemptor whereas those jobs that get forced to free resources areconsidered as preemptee.

In Altair Grid Engine 8.3 manual preemption is implemented. semi-automatic or auto-matic trigger will follow with upcoming releases.
Note

10.5.2 Preemption Trigger and Actions

Altair Grid Engine 8.3 provides six different preemption actions to preempt a job. Withman-ual preemption the user/manager has to choose which of the available preemptive actionsshould be used to trigger preemption of a job. With semi-automatic and automatic pre-emptionmechanisms (available with future versions of Altair Grid Engine) either the systemconfiguration or the Altair Grid Engine scheduler decides automatically which preemptionaction will be taken to release resources.
The six preemptive actions differ in the way the resources will be available for other jobsafter the preemptee is preempted. Some of those actions have restrictions on which jobtypes they can be applied to as well as who is allowed to trigger them. The actions differin the way how they treat the processes that are executed on behalf of a job that getspreempted.
Within Altair Grid Engine all preemption actions are represented by single capital letter (T,
R, C, P, N or S) that is either passed to a command, specified in a configuration object or isshown in command output displaying the internal state of a job.
Some of the preemption actions trigger the suspend_method that might be definedin the queue where the preemptee is executed. To be able to distinguish differ-ent preemption actions within the suspend_method an optional argument named
Grid Engine Users’s Guide v 8.7.0 104

10 Advanced Concepts

action ∗ ∗maybeusedaspseudoargumentwhenthemethodisdefined.The ∗ ∗action argument willbe expanded to the corresponding letter that represents the preemptive action duringruntime.
Terminate Action: The preemptee will be terminated. As soon as all underlying processesare terminated all resources that were bound by that preemptee will be reported as free.The T-action can be applied to any job. Users can apply it only to their own jobs.
Checkpoint Action: The preemptee will be checkpointed. As soon as a checkpoint is writ-ten and all underlying processes are terminated all bound resources will be reported asavailable and the job will be rescheduled. This preemption action can only be applied tocheckpointable jobs where a checkpointing environment was specified during submissionof the job.
Rerun Action: The preempted job will be rescheduled. As soon as all underlying processesare terminated all bound resources will be reported as available. Managers can enforce thererun of jobs even if those jobs are not tagged as rerun-able on the job or queue level.
Preemption Action: The preemptee will be preempted. Preempted means that the con-figured queue-suspend method ($action set to P) will be executed that might trigger ad-ditional operations to notify the processes about the upcoming preemption so that thoseprocesses can release bound resources by itself. After that the processes are suspendedand all consumable resources, where the attribute available-after-preemption (aapre) is setto true, are reported as free. Not-available-after-preemption resources are still reported tobe bound by the preempted job. The preemption action can be applied to all preemptionproviders whereas users can only preempt their own jobs.
eNhanced Suspend Action: Similar to the preempt action the queue suspend_method($action set to N) will be triggered before the preemptee gets suspended. Only non-memory-based consumables (including License Orchestrator managed license resources)are reported as free when the processes are suspended. Memory-based consumables thatare available-after-preemption and also not-available-after-preemption consumables willstill be reported as bound by the enhanced suspended job. This preemption action can beapplied to all preemption providers. Users can only preempt their own jobs.
Suspend Action: Similar to the preempt action the triggered method will be the sus-
pend_method ($action set to S) before the preemptee gets suspended. Only consumedslots (and License Orchestrator-managed license resources) will be available after suspen-sion. All other resources, independent if they are tagged as available-after-preemptionor not-available-after-preemption in the complex configuration, will be reported as still inuse. This preemption action can be applied to all preemption providers. Users can onlypreempt their own jobs.
The obvious question regarding preemption is; which of the six preemptive actions shouldbe chosen to manually preempt a job? If a job is checkpointable then it should be the C-action. Here all consumed resources of the preemptee will be available for higher priorityjobs. The preemptee can continue its work when it is restarted from the last written check-point.
The T-action and the R-actions release the full set of resources but they should be seen asthe last resort when no other less disruptive preemptive actions can be applied. The reasonfor this is that the computational work of the preemptee up to the point in time wherethe preemptee is rescheduled or terminated is typically lost which is a waste of clusterresources.
Grid Engine Users’s Guide v 8.7.0 105

10 Advanced Concepts

From the Altair Grid Engine perspective the P-action makes all bound resources (slots +memory + other consumable resources where aapree of the complex is set to true) avail-able for higher priority jobs. But this operation is only correct if the machine has enoughswap space configured so that the underlying operating system is able to move consumedphysical memory pages of the suspended processes into that swap space and when theapplication either releases consumed resources (like software licenses, special devices, . . .)automatically or when a suspend_method can be configured to trigger the release of thoseresources. The N-action can be used for jobs that run on hosts without or with less config-ured swap space. The N action will release only non-memory-based consumables (slots +other consumable resources where aapree of the complex is set to true).
If jobs either do not use other resources (like software licenses, special devices, . . .) andwhen in use memory on the node does not need to be released, then the S-action can bechosen. It is the simplest preemption action that provides slots (and License Orchestratorlicenses) only after preemption. Please note that the S-action and S-state of jobs is differentfrom the s-state of a job (triggered via qmod -s command). A regularly suspended job
does not release slots of that job. Those slots will remain in use by the job that wassuspended.
The P and N-action will make consumable resources of preemptees available for higherpriority jobs. This will be done automatically for all preconfigured consumable resourcesin a cluster. For those complexes the available-after-preemption-attribute (aapre) is set to
YES. Managers of a cluster can change this for predefined complexes. They also have todecide if a site defined resource is available after preemption. For resources that should beignored by the preemptive scheduling functionality the aapre-attribute can be set to NO.
Please note that the resource set for each explained preemptive action defines the maxi-mum + set of resources thatmight get available through that preemption action. Additionalscheduling parameters (like prioritize_preemptees or preemptees_keep_resources thatare further explained below) might reduce the resource set that get available through pre-emption to a subset (only those resources that are demanded by a specified preemp-
tion_consumer) of the maximum set.
10.5.3 Manual Preemption

Manual preemption can be triggered with the qmod command in combination with the -pcommand line switch. The -p expects one job ID of a preemption_consumer followed by oneor multiple job IDs or job names of preemption_provider. The last argument contains anoptional character representing one of the six preemptive_actions. When the last argumentis omitted P-action will be used as default.
Syntax:

qmod [-f] -p <preemption_consumer>
<preemption_provider> [<preemption_provider> ...]
[<preemption_action>]

<preemption_consumer> := <job_ID> .
<preemption_provider> := <job_ID> | <job_name> .
<preemption_action> := "P" | "N" | "S" | "C" | "R" | "T" .

Grid Engine Users’s Guide v 8.7.0 106

10 Advanced Concepts

The manual preemption request will only be accepted if it is valid. Manual preemptionrequest will be rejected when:
• Resource reservation is disabled in the cluster.• preemption_consumer has no reservation request.• At least one specified preemption_provider is not running.• C-action is requested but there is at least one preemption_provider that is not check-pointable.• R-action is requested but there is at least one preemption_provider that is neithertagged as rerunnable nor the queue where the job is running is a rerunnable queue.(Manager can enforce the R-action in combination with the -f command line argu-ment).

Manual preemption requests are not immediately executed after they have been acceptedby the system. The Altair Grid Engine scheduler is responsible for triggering manualpreemption during the next scheduling run. Preemption will only be triggered if the re-sources are not available to start the preemption consumer within a configurable timeframe (see preemption_distance below). If enough resources are available or when thescheduler sees that they will be available in near future then the manual preemption re-quest will be ignored.
Please note that resources available through preemption are only reserved for the specified
preemption_consumer as long as there are no other jobs of higher priority that demandthose resources. If there are jobs of higher priority then those jobs will get the resourcesand the specified preemption_consumer might stay in pending state until either the higherpriority jobs leaves the system or another manual preemption request is triggered.
Preemptees will automatically trigger a reservation of all resources lost due to preemption.This means that Preemptees can be reactivated as soon as they are eligible due to priorityand as soon as the missing resources are available. There is no dependency between apreemptor and the preemptees. All or a subset of preemptees might get restarted even ifthe preemptor is still running if requested resources are added to the cluster or becomeavailable due to other jobs completing.
Preemtees will have the jobs state P, N or S (shown in the qstat output or qmon dialogs)depending of the corresponding preemption action that was triggered. Those jobs, as wellas preemptees that are rescheduled due to the R-action, will appear as pending jobs evenif they still hold some resources. Please note that regularly suspended jobs (in s-state dueto qmod -s) still consume all resources and therefore block the queue slots for other jobs.qstat -j command can be used to see which resources are still bound by preemptees.
10.5.4 Preemption Configuration

The following scheduling configuration parameters are available to influence the preemp-tive scheduling as well as the preemption behaviour of the Altair Grid Engine cluster.
max_preemptees: The maximum number of preemptees in the cluster. Preempted jobsmay hold some resources such asmemory and if the preemptees_keep_resources param-eter is configured might keep most of their resources while in a preempted state. A high

Grid Engine Users’s Guide v 8.7.0 107

10 Advanced Concepts

number of preemptees can significantly impact cluster operation and throughput. Limitingthe number of preemptees will limit the amount of held but unused resources.
prioritize_preemptees: By setting this parameter to true or 1 preemptees get a reserva-tion before the regular scheduling is done. This can be used to ensure that preempteesget restarted again at the earliest possibly opportunity when the preemptor finishes, un-less resources required by the preemptee are still held by jobs which were backfilled. pri-
oritize_preemptees in combination with disabling backfilling provides a guarantee that pre-emptees get restarted when the preemptor finishes, at the expense of lower cluster utiliza-tion.
preemptees_keep_resources: When a job gets preempted the freed resources will onlybe consumed by the preemptor. This prevents resources of a preemptee from being con-sumed by other jobs. prioritize_preemptees and preemptees_keep_resources in com-bination provide a guarantee that preemptees get restarted as soon as the preemptor fin-ishes, at the expense of awaste of resources and bad cluster utilization. Exception: Licensesmanaged through License Orchestrator and a license manager cannot be held by a pre-emptee. As the preemptee processes are suspended the license manager might assumethe license is free which will lead to the license be consumed by a different job. When thepreemptee processes get unsuspended a license query will fail if the license is held.
preemption_distance: A preemption will only be triggered if the resource reservation thatcould be created for a job is farther in the future than the given time interval (hh:mm:ssdefault 00:15:00). Reservation can be disabled by setting the value to 00:00:00. No Reser-vation will be created if job preemption is forced by a manager manually using qmod -f -p
. . . .
10.5.5 Preemption in Combination with License Orchestrator

License complexes that are reported by License Orchestrator are automatically defined asavailable-after-preemption (aapre is set to YES). This means that when a Altair Grid Enginejob that consumes a License Orchestrator license resource gets preempted, it triggers anautomatic preemption of the corresponding License Orchestrator license request. The li-cense will be freed and is then available for other jobs.
Manual preemption triggered in one Altair Grid Engine cluster does not provide a guaranteethat the specified preemption consumer (or even a different job within the same Altair GridEngine cluster) will get the released resources. The decision which cluster will get the re-leased resource depends completely on the setup of the License Orchestrator cluster. Con-sequently it might happen that a license resource that gets available through preemptionin one cluster will be given to a job in a different cluster if the final priority of the job/clusteris higher than that of the specified preemption consumer.
10.5.6 Common Use Cases

License consumable (without License Orchestrator) Scenario: There is a license-consumable defined that has a maximum capacity and multiple jobs compete for thelicense-consumable by requesting one or multiple of those licenses.
Complex definition:

Grid Engine Users’s Guide v 8.7.0 108

10 Advanced Concepts

$ qconf -sc
...
license lic INT <= YES YES 0 0 YES 0.000000 YES NO
...

The nineth attribute YES defines the value of aapre. This means that the license resourcewill be available after preemption.
License capacity is defined on global level:

$ qconf -se global
...
complex_values license=2

When two jobs are submitted into the cluster both licenses can be consumed by the jobs.
$ qsub -l lic=1 -b y -l h_rt=1:00:00 sleep 3600
$ qsub -l lic=1 -b y -l h_rt=1:00:00 sleep 3600
...

$ qstat -F lic
...
all.q@rgbtest BIPC 0/1/60 lx-amd64

gc:license=0
3000000005 0.55476 sleep user r

all.q@waikiki BIPC 0/1/10 0.00 lx-amd64

gc:license=0
3000000004 0.55476 sleep user r 04/02/2015 12:32:54 1

Submission of a higher priority job requesting 2 licenses and resource reservation:
$ qsub -p 100 -R y -l lic=2 -b y -l h_rt=1:00:00 sleep 3600

The high priority job stays pending, it will get a reservation, but only after both lower priorityjobs are expected to finish:
$ qstat -j 3000000006
...
reservation 1: from 04/02/2015 13:33:54 to 04/02/2015 14:34:54

all.q@hookipa: 1

We want the high priority job to get started immediately, therefore we trigger a manualpreemption of the two lower priority jobs:
$ qmod -p 3000000006 3000000004 3000000005 P
Accepted preemption request for preemptor candidate 3000000006

Grid Engine Users’s Guide v 8.7.0 109

11 Submitting Jobs from or to Windows hosts

The lower priority jobs get preempted, the high priority job can start:
$ qstat
job-ID prior name user state submit/start at queue jclass slots ja-task-ID

3000000006 0.60361 sleep joga r 04/02/2015 12:37:50 all.q@waikiki 1
3000000004 0.55476 sleep joga P 04/02/2015 12:32:54 1
3000000005 0.55476 sleep joga P 04/02/2015 12:32:54 1

Resources which have been preempted are shown in qstat -j. In order for the preempteesto be able to resume work as soon as possible, preempted jobs get a resource reservationfor the resources they released, e.g.
$ qstat -j 3000000004
...
preempted 1: license, slots
usage 1: wallclock=00:04:45, cpu=00:00:00, mem=0.00015 GBs, io=0.00009,

vmem=19.414M, maxvmem=19.414M
reservation 1: from 04/02/2015 13:38:50 to 05/09/2151 19:07:05

all.q@waikiki: 1

11 Submitting Jobs from or to Windows hosts

Registering User passwords

In order to execute a job on a Windows execution host, Altair Grid Engine has to log on asthe job user on this host. For this, Altair Grid Engine needs the user’s password. Use the
sgepasswd command on a UNIX Altair Grid Engine submit or administrative host to registerthe user password. The sgepasswd command encrypts the password and stores it in the
$SGE_ROOT/$SGE_CELL/common/sgepasswd file.
Network shares on the Windows execution host

If a mounted network drive (net use x: \\server\share) is used in the path to the job bi-nary or in some argument to the job, this often does not work. Even if the job user haspersistent mounts on the Windows execution host or if the job user is logged on to the Win-dows execution host and has created some mounts manually, these are not available forthe job. The job runs in a separate session, manually createdmounts do not exist there, andpersistent mounts show inconsistent behaviour, so they should be avoided, too. Instead,UNC paths should be used.
E.g.

> net use x: \\server\share
> qsub -b y x:\path\job.exe

will not work, while

Grid Engine Users’s Guide v 8.7.0 110

11 Submitting Jobs from or to Windows hosts

> qsub -b y \\server\share\path\job.exe

should work.
Submitting Jobs from or to Windows hosts

If a job is submitted from or to a Windows host, it has to be taken care of some of thedifferences between UNIX andWindows. It has to be distinguished between three differentcases:
1. Job submission from a Windows submit host to a Windows execution host2. Job submission from a Windows submit host to a UNIX execution host3. Job submission from an UNIX submit host to a Windows execution host

So generally spoken, if the cluster consists of a mixture of Windows and UNIX hosts, for alljobs the destination architecture should be specified, either directly or indirectly.

11.1 Job submission from a Windows submit host to a Windows
execution host

This is an example job that contains all elements that differ from a normal UNIX-to-UNIXjob submission:
> qsub -o /tmp/$JOB_ID.out -b y cmd.exe /c %SGE_ROOT%\examples\jobs\sleeper.bat

It contains:
• Paths in arguments to the submit client have to be inUNIX format: -o /tmp/$JOB_ID.out• Prevent job script transfer: -b y• The job itself, which is the interpreter for the script: cmd.exe• Paths in arguments to the job have are not mapped by Altair Grid Engine:
%SGE_ROOT%\examples\jobs\sleeper.bat

Paths in arguments have to be in UNIX format

The Altair Grid Engine submit clients cannot handle paths in Windows/DOS or UNC format.The parser of these clients will reject all paths in arguments to the client itself that are notin UNIX format. Thus, it is necessary to specify these paths in UNIX format.
If these paths are to be evaluated on the Windows execution host, the path mapping filemust contain the corresponding entry, so the execution daemon can translate the UNIXpath to the Windows path.
In this example, the variable $JOB_ID is used in the path. This works, because this variableis set on the Windows execution host in the execution daemon. The execution daemonresolves these variables in UNIX format properly, no matter if on Windows or UNIX.
Prevent job script transfer

Grid Engine Users’s Guide v 8.7.0 111

11 Submitting Jobs from or to Windows hosts

This is necessary because the job - cmd.exe - is a binary that is already located on the Win-dows execution host.
The job itself - the interpreter for the script

OnWindows, there is no hashbangmagic, so the submitter must tell the execution daemonwhat interpreter there is to be started in order to execute the “sleeper.bat” script. The “/c
%SGE_ROOT%\examples\jobs\sleeper.bat” are just arguments to the interpreter. The inter-preter already exists on the execution host, so Altair Grid Engine does not have to transferit from the submit host to the execution host. This is denoted by the “-b y” option.
Paths in the job arguments are not touched by Altair Grid Engine

Altair Grid Engine has no idea what the arguments to the job mean or where they are eval-uated, so Altair Grid Engine cannot map paths in the arguments to the job. They have to bespecified in the format that can be used by the job itself.
Examples:

• Submit a binary job:
> qsub -o /home/jdoe/outfile.txt -j y -N myjob -b y notepad.exe

• Submit an interactive job:
> qrsh hostname

11.1.1 Running Jobs in the foreground

Some Windows applications do not start in the background, i.e. if they are not started in aWindows session that has a visible desktop. This desktop may be visible on the screen thatis physically attached to the host, or in any RemoteDesktop session or similar. Furthermore,someWindows applications open aMessageBox in case of errors, even if they are designedto run in background. Also Windows itself might show aMessageBox if e.g. a DLL is missingto run the application.
In order to allow these jobs to run or to see the error MessageBoxes, Altair Grid Engineallows to start jobs in the foreground, even on a foreign desktop. A job can request to bestarted in the foreground by requesting the display_win_gui attribute (short: dwg), whichis of type BOOL.
Example:

> qsub -l display_win_gui=true -b y notepad.exe

should start the Windows notepad on a Windows execution host, allowing it to show it’swindow on the currently visible desktop.
If no desktop is visible at all, this job will fail!
Running foreground jobs in the background

Grid Engine Users’s Guide v 8.7.0 112

11 Submitting Jobs from or to Windows hosts

It is also possible to force a job to run in the background even if it requests the
display_win_gui attribute. This can be used in job dependencies - if two jobs haveto run on the same host and the second job has to run in the foreground, the first still canrun in the background, but the Scheduler of Altair Grid Engine needs the information thatit has to select a Windows execution host that provides display_win_gui=true already forthe first job.
This feature is enabled by setting the SGE_BACKGND_MODE in the job environment to 1, e.g.:

> qsub -l display_win_gui=true -v SGE_BACKGND_MODE=1 -b y notepad.exe

Because this doesn’t work for certain applications which put themselves in the foreground,there is an option to redirect theGUI of such jobs to an invisibleWindow station anddesktop.This feature is enabled by setting the SGE_DWG_DESKTOP in the job environment accordingly.These settings are supported: * service to use a desktop the services Window station inlogon session 0 to create a new desktop for the job’s GUI there. The SGE_BACKGND_MODEvariable is ignored in this case. * none, any unsupported value or omit the SGE_DWG_DESKTOPenvironment variable to use the old behaviour, i.e. let Altair Grid Engine search for a desktopto display the GUI on. SGE_BACKGND_MODE is obeyed like described above.
E.g.:

> qsub -l display_win_gui=true -v SGE_DWG_DESKTOP=service -b y notepad.exe

starts the job in session 0 (the services session), creates a newWindow station and desktopfor the GUI of the job and associates the job with this desktop. The desktop is invisible butstill the job application can use all functionality a Window station and desktop provide.

11.2 Job submission from an UNIX submit host to a Windows
execution host

In general, the same rules apply as for job submission from a Windows submit host to aWindows execution host. The only thing to take care of is the shell on the submit host, ifa path in Windows format is specified on the command line, the shell will consume thebackslashes, so the backslashes have to be doubled. Furthermore, variables that are to beresolved on the submit host have to be specified in UNIX format (starting with a $ sign) -but take care to which format variables that contain a path do resolve! The path in the jobargument of the test job:
qsub -b y cmd.exe /c $SGE_ROOT\\examples\\jobs\\sleeper.bat

would resolve to e.g. /opt/uge\examples\jobs\sleeper.bat, which doesn’t exist on theWin-dows execution host, so the proper way to specify this path is to manually map the pathand specify it as an absolute path:
qsub -b y cmd.exe /c \
\\\\server\\opt\\uge\\examples\\jobs\\sleeper.bat

Grid Engine Users’s Guide v 8.7.0 113

11 Submitting Jobs from or to Windows hosts

which resolves to \\server\opt\uge\examples\jobs\sleeper.bat which exists on the Win-dows execution host.
If a Altair Grid Engine variable is used as argument to an Altair Grid Engine option, i.e. ifit has to be resolved on the execution host, not on the submit host, the $ sign has to beescaped, too:

qsub -o /tmp/\$JOB_ID.out -b y cmd.exe /c \
\\\\server\\opt\\uge\\examples\\jobs\\sleeper.bat

11.3 Job submission from a Windows submit host to an UNIX
execution host

These jobs can be submitted like jobs from UNIX to UNIX, only paths in arguments to thejob have to be mapped manually and again, paths in variables are resolved on the submithost, likely to the wrong format:
> qsub %SGE_ROOT%/examples/jobs/sleeper.bat

would resolve to \\server\opt\uge/examples/jobs/sleeper.batwhich doesn’t exist on thesubmit host, so again manual mapping is needed:
> qsub /opt/uge/examples/jobs/sleeper.bat

resolves to /opt/uge/examples/jobs/sleeper.bat, which should perfectlywork on theUNIXexecution host.

Grid Engine Users’s Guide v 8.7.0 114

	Overview of Basic User Tasks
	A Simple Workflow Example
	Displaying Status Information
	Cluster Overview
	Hosts and Queues
	Requestable Resources
	User Access Permissions and Affiliations

	Submitting Batch Jobs
	What is a Batch Job?
	How to Submit a Batch Job
	Example 1: A Simple Batch Job
	Example 2: An Advanced Batch Job
	Example 3: Another Advanced Batch Job
	Example 4: A Simple Binary Job

	Specifying Requirements
	Request Files
	Requests in the Job Script

	Using Job Classes to Prepare Templates for Jobs
	Examples Motivating the Use of Job Classes
	Defining Job Classes
	Attributes describing a Job Class
	Example 1: Job Classes - Identity, Ownership, Access
	Attributes to Form a Job Template
	Example 2: Job Classes - Job Template
	Access Specifiers to Allow Deviation
	Example 3: Job Classes - Access Specifiers
	Different Variants of the same Job Class
	Example 4: Job Classes - Multiple Variants
	Enforcing Cluster Wide Requests with the Template Job Class

	Relationship Between Job Classes and Other Objects
	Resources Available for Job Classes
	Defining Job Class Limits
	JSV and Job Class Interaction

	Commands to Adjust Job Classes
	Creating, Modifying and Deleting Job Classes
	States of Job Classes

	Using Job Classes to Submit New Jobs
	Example: Submit a Job Class Job and Adjust Some Parameters
	Status of Job Classes and Corresponding Jobs

	Monitoring and Controlling Jobs
	Getting Status Information on Jobs
	Deleting a Job
	Re-queuing a Job
	Modifying a Waiting Job
	Altering Job Requirements

	Changing Job Priority
	Obtaining the Job History

	Other Job Types
	Array Jobs
	Interactive Jobs
	qrsh and qlogin
	qmake
	qsh

	Parallel Jobs
	Parallel Environments
	Submitting Parallel Jobs

	m_numa_nodes Amount of NUMA nodes on the execution host.
	Memory Allocation Strategy round_robin
	Memory Allocation Strategy cores and cores:strict
	Memory Allocation Strategy nlocal

	Checkpointing Jobs
	User-Level Checkpointing
	Kernel-Level Checkpointing
	Checkpointing Environments
	Submitting a Checkpointing Job

	Immediate Jobs
	Reservations
	Advance Reservations
	Standing Reservations

	Jobs using Docker Containers
	Running a sequential job in a Docker container
	Running a parallel Job in Docker containers
	Running MPI jobs in Docker containers
	Running an array Job in Docker containers
	Running a Job in a Docker image that is not available locally
	Using placeholders to dynamically define Docker options
	Support for nvidia-docker 2.0

	Getting a Consistent View onto the System by Using Sessions
	Communication with without using Sessions
	Using sessions to communicate with the system

	Submission, Monitoring and Control via an API
	The Distributed Resource Management Application API (DRMAA)
	Basic DRMAA Concepts
	Supported DRMAA Versions and Language Bindings
	When to Use DRMAA
	Environment Variable Influences
	Examples
	Building a DRMAA Application with C**
	Building a DRMAA Application with Java

	Further Information

	Advanced Concepts
	Job Dependencies
	Examples

	Using Environment Variables
	Using the Job Context
	Transferring Data
	Transferring Data within the Job Script
	Using Delegated File Staging in DRMAA Applications

	Manual, Semi-Automatic and Automatic Preemption
	Preemption Terms
	Preemption Trigger and Actions
	Manual Preemption
	Preemption Configuration
	Preemption in Combination with License Orchestrator
	Common Use Cases

	Submitting Jobs from or to Windows hosts
	Job submission from a Windows submit host to a Windows execution host
	Running Jobs in the foreground

	Job submission from an UNIX submit host to a Windows execution host
	Job submission from a Windows submit host to an UNIX execution host

