
Univa, An Altair Company

Grid Engine Documentation

Grid Engine Administrator’s Guide

Author:Altair Engineering Version:8.7.0

September 6, 2021

©2021ALTAIR ENGINEERING, INC. ALL RIGHTS RESERVED.
WE ARE CURRENTLY LISTED ON NASDAQ AS ALTR. UNIVA IS AN ALTAIR COMPANY

Contents

Contents

1 Navigating and Understanding 1

1.1 Navigating the Altair Grid Engine System . 1
1.1.1 Location of Altair Grid Engine Configuration Files and Binaries 1
1.1.2 Displaying Status Information . 8

Understanding the Various Job States . 9
1.2 Understanding a Default Installation . 14

1.2.1 Default Queue . 14
1.2.2 Default PE . 15
1.2.3 Default User Set Lists . 16
1.2.4 Default Host Group List . 16
1.2.5 Default Complex Attributes . 17

1.3 Understanding Key Altair Grid Engine Configuration Objects 18
1.3.1 The Cluster Configuration . 19
1.3.2 The Scheduler Configuration . 19
1.3.3 Host and Queue Configurations . 19

1.4 Navigating the ARCo Database . 19
1.4.1 Accessing the ARCo Database . 19
1.4.2 Views to the Database . 20

Accounting . 20
1.5 message text a message describing the event 22

1.5.1 Database Tables . 33
1.6 Common Administrative Tasks in a Altair Grid Engine System 47

1.6.1 Draining Then Stopping the Cluster . 47
1.6.2 Starting Up and Activating Nodes Selectively 48
1.6.3 Adding New Execution Hosts to an Existing Altair Grid Engine System . 49
1.6.4 Generate/Renew Certificates and Private Keys for Users 49
1.6.5 Backup and Restore the Configuration 51
1.6.6 Changing the Altair Grid Engine admin password for all Starter Serviceson all execution hosts . 55

1.7 Managing User Access . 56
1.7.1 Setting Up a Altair Grid Engine User . 56

Grid Engine Administrator’s Guide v 8.7.0 i

Contents

1.7.2 Managers . 57
1.7.3 Operators and Owners . 58
1.7.4 Permissions of Managers, Operators, Job or Queue Owners 58
1.7.5 User Access Lists and Departments . 60
1.7.6 Projects . 62

1.8 Understanding and Modifying the Cluster Configuration 63
1.8.1 Commands to Add, Modify, Delete or List Global and Local Configura-tions . 64
1.8.2 Configuration Parameters for Global and Local Configurations 64

1.9 Understanding and Modifying the Altair Grid Engine Scheduler Configuration 66
1.9.1 The Default Scheduling Scheme . 66

1.10 Configuring Properties of Hosts and Queues . 68
1.10.1 Configuring Hosts . 69
1.10.2 Configuring Queues . 75
1.10.3 Utilizing Complexes and Load Sensors . 80
1.10.4 Configuring and Using the RSMAP Complex Type 86
1.10.5 Managing Access to Devices with RSMAPs 93
1.10.6 Advanced Attribute Configuration . 94
1.10.7 Configuring and Using Linux cgroups . 95

1.11 Monitoring and Modifying User Jobs . 100
1.12 Diagnostics and Debugging . 100

1.12.1 KEEP_ACTIVE functionality . 100
1.12.2 Diagnosing Scheduling Behavior . 101
1.12.3 Location of Logfiles and How to Interpret Them 102
1.12.4 Turning on Debugging Information . 105

2 Licensing - Summary concerning licensing of Altair Grid Engine 112

2.1 General Overview . 112
2.2 Licensed Resources . 112
2.3 License Usage Records . 113
2.4 Licensing Actions . 114
2.5 Licensing Algorithm . 115
2.6 Requirements . 116
2.7 Administrative Commands . 117

Grid Engine Administrator’s Guide v 8.7.0 ii

Contents

2.7.1 Display License Usage Over Time. 117
2.7.2 Trigger License Verification Manually . 117
2.7.3 Enforce Reporting of Cloud Resources 117
2.7.4 Transfer License Usage Information between Clusters 118
2.7.5 Disabling License Consumption for Specific Hosts and/or Resources . 118
2.7.6 AGERest interface . 118

3 Special Activities 118
3.1 Tuning Altair Grid Engine for High Throughput 118

3.1.1 sge_qmaster Tuning . 118
3.1.2 Tuning Scheduler Performance . 121
3.1.3 Reducing Overhead on the Execution Side 122

3.2 Optimizing Utilization . 122
3.2.1 Using Load Reporting to Determine Bottlenecks and Free Capacity . . 123
3.2.2 Scaling the Reported Load . 125
3.2.3 Alternative Means to Determine the Scheduling Order 126

3.3 Managing Capacities . 129
3.3.1 Using Resource Quota Sets . 129
3.3.2 Using Consumables . 132

3.4 Implementing Pre-emption Logic . 136
3.4.1 When to Use Pre-emption . 136
3.4.2 Utilizing Queue Subordination . 137
3.4.3 Advanced Pre-emption Scenarios . 138

3.5 Integrating Altair Grid Engine with a License Management System 140
3.6 Managing Priorities and Usage Entitlements . 141

3.6.1 Share Tree (Fair-Share) Ticket Policy . 141
3.6.2 Functional Ticket Policy . 153
3.6.3 Override Ticket Policy . 154
3.6.4 Job Shares . 155
3.6.5 Handling of Array Jobs with the Ticket Policies 156
3.6.6 Urgency Policy . 157
3.6.7 User Policy: POSIX Policy . 162

3.7 Job Placement . 163
3.7.1 Host/Queue Sorting . 163

Grid Engine Administrator’s Guide v 8.7.0 iii

Contents

3.7.2 Affinity, Anti-Affinity, Best Fit . 166
Affinity Use Cases . 167

Affinity . 167
Anti-Affinity . 167
Best Fit . 168

3.8 Advanced Management for Different Types of Workloads 169
3.8.1 Parallel Environments . 169
3.8.2 Setting Up Support for Interactive Workloads 176
3.8.3 Setting Up Support for Checkpointing Workloads 176
3.8.4 Enabling Reservations . 179
3.8.5 Greedy Resource Reservation (Deprecated) 183
3.8.6 Simplifying Job Submission Through the Use of Default Requests . . . 188
3.8.7 Job Submission Verifiers . 189
3.8.8 Enabling and Disabling Core Binding . 205

3.9 Ensuring High Availability . 205
3.9.1 Prerequisites . 206
3.9.2 Installation . 206
3.9.3 Testing sge_shadowd Takeover . 207
3.9.4 Migrating the Master Host Back After a Takeover 207
3.9.5 Tuning the sge_shadowd . 207
3.9.6 Troubleshooting . 208

3.10 Utilizing Calendar Schedules . 209
3.10.1 Commands to Configure Calendars . 209
3.10.2 Calendars Configuration Attributes . 210
3.10.3 Examples to Illustrate the use of Calendars 211

3.11 Setting Up Nodes for Exclusive Use . 212
3.12 Deviating from a Standard Installation . 213

3.12.1 Utilizing Cells . 213
3.12.2 Using Path Aliasing . 213
3.12.3 Host-name Resolving and Host Aliasing 215

3.13 Integration with NVIDIA DCGM . 217
3.13.1 Enabling Support for NVIDIA DCGM . 217
3.13.2 Using Load Values from NVIDIA DCGM 218

Grid Engine Administrator’s Guide v 8.7.0 iv

Contents

3.14 Integration with Docker Engine . 219
3.14.1 Docker Images Suitable for Autostart Docker Jobs with Arguments . . 220
3.14.2 Run container as root, allow running prolog etc. as a different user . . 221
3.14.3 Automatically map user ID and group ID of a user into the container . 221
3.14.4 Create a container_pe_hostfile with all container hostnames 222
3.14.5 Run tightly-integrated parallel jobs in Docker containers 222
3.14.6 Configuring the Docker daemon response timeout 225
3.14.7 Support for nvidia-docker 2.0 . 225

3.15 Special Tools . 226
3.15.1 The Loadcheck Utility . 226
3.15.2 Utilities for LMDB spooling . 227

Grid Engine Administrator’s Guide v 8.7.0 v

1 Navigating and Understanding

1 Navigating and Understanding

1.1 Navigating the Altair Grid Engine System

Altair Grid Engine consists of different modules, which are usually distributed over a largenumber of hosts. This chapter provides a high-level overview of a Altair Grid Engine instal-lation, including details on where the execution binaries and configuration files are located,how status information about different components and objects can be displayed, and howthey are interpreted.
1.1.1 Location of Altair Grid Engine Configuration Files and Binaries

To interact with a Altair Grid Engine, the client binaries and basic configuration parametersmust be available in the shell environment. To do the whole shell environment setup, sim-ply source a predefined shell script generated during the product installation. One majorpart of the working environment is the $SGE_ROOT environment variable, which containsthe full path to the Altair Grid Engine installation. Using such environment variables allowsinteractions with different Altair Grid Engine installations on the same host.
The following example assumes that Altair Grid Engine is installed in the /opt/UGE820 direc-tory, and that the user works with bash. This example shows how the environment of thisparticular installation is sourced in order to interact with the system.
> source /opt/UGE820/default/common/setting.sh

Within a C-shell the corresponding settings script must be sourced:
> source /opt/UGE820/default/common/setting.csh

And on Windows (win-x86), it is assumed the directory of Altair Grid Engine is available on\\fileserver\share\opt\UGE820. There, the following batch script must be executed:
> \\fileserver\share\opt\UGE820\default\common\settings.bat

Table 1: Environment Variables Set via the setting Script
EnvironmentVariable Description
$SGE_ROOT The absolute path to the Altair Grid Engine product installation.
$ARCH The Altair Grid Engine architecture string. It identifies the OS andin some cases the processor architecture. This variable is not seton Windows (win-x86).
$SGE_CELL The name of the Altair Grid Engine cell. The purpose of the cellname is to distinguish different clusters, which are using thesame binary installation (and therefore having the same

$SGE_ROOT).
Grid Engine Administrator’s Guide v 8.7.0 1

1 Navigating and Understanding

EnvironmentVariable Description
$SGE_CLUSTER_NAME The system wide unique name of the Altair Grid Engine cluster.
$SGE_QMASTER_PORT Network port where the master daemon is listening.
$SGE_EXECD_PORT Network port where the execution daemons are listening.
$PATH The default path variable is extended with the path to the GridEngine binary directory.
$MANPATH The manual page path variable is extended in order to providecommand-line access to the various Altair Grid Engine manpages. This variable is not set on Windows (win-x86).library path Path to Altair Grid Engine libraries. Only set on architectures thatdo not have a built-in run-path. The library path variabledepends on the OS type.

The following figure illustrates the structure of the $SGE_ROOT directory.

Grid Engine Administrator’s Guide v 8.7.0 2

1 Navigating and Understanding

Grid Engine Administrator’s Guide v 8.7.0 3

1 Navigating and Understanding

FIGURE 1: Overview of the $SGE_ROOT Directory Structure
The main configuration files are located in the $SGE_ROOT/$SGE_CELL/common directory (rep-resented by the yellow files in Figure 1 above). Most of these files are generated automat-ically when the configuration is changed by the corresponding Altair Grid Engine adminis-tration command. The following table provides an overview of these files.

Table 2: Overview of Main Configuration Files
Configuration File Description
accounting Contains accounting information about past jobs. The qacctclient reads this data.
bootstrap Contains information about spooling and multi-threading forthe qmaster.
configuration Contains the current global cluster configuration, which can bemodified by the qconf -mconf command.
qtask The qtask configuration file (see man page qtask).
schedd_runlog Contains information about a scheduling run, when it ismonitored (see qconf -tsm).
cluster_name Contains the unique cluster name.
sched_configuration Contains the current scheduler configuration, which can bemodified by the qconf -tsm command.
sge_aliases The path aliasing configuration file.
shadow_masters Contains a list of shadow daemons.
local_conf/<hostname>All files in this directory represent the local clusterconfiguration for the specific host, and they can be modified bythe qconf -mconf <hostname> command.
path_map Exists only if Windows hosts are in the cluster. Contains themapping between UNIX paths and the corresponding Windows(win-x86) paths.

During run-time, all scheduler decisions and status information are written to files (classicspooling) or a database (PostgreSQL), either of which is usually held on a secondary stor-age (such as fast SSDs, and/or hard drives). This is done so that, in case of problems, newlystarted daemons can retrieve the current state and can immediately proceed with opera-tion. There are two types of spooling directories, one for the master daemon and one for the
execution daemon. The execution daemon spooling directories should point to a local direc-tory (and not an NFS shared directory) for the performance benefit. ForWindows executiondaemons, the spooling directorymust point to a local directory. When shadow daemon is con-figured, themaster spooling directorymust be shared with the shadow daemon host; if not,the master spooling should also be held locally.
Qmaster Spooling Directory

The following figure illustrates the structure of the qmaster spooling directory (Figure 2):

Grid Engine Administrator’s Guide v 8.7.0 4

1 Navigating and Understanding

FIGURE 2: Overview of the qmaster Spooling Directory
Execution Host Spooling Directory

The following figure illustrates the structure of the execution host spooling directory (Figure3 to 6):

Grid Engine Administrator’s Guide v 8.7.0 5

1 Navigating and Understanding

FIGURE 3: Overview of the Execution Host Spooling Directory
Table 3: Execution Host Spooling Directory Details

Directory or File Description
<execd_spool_dir> The execution host spooling base directory as defined by theconfiguration value “execd_spool_dir” in the execution host orglobal host configuration.
<hostname> The execution host specific spooling subdirectory. The name ofthis directory is the name of the execution host.
execd.pid The process ID of the execution daemon. It writes this file afterstart.
messages The log file of the execution daemon. The amount of messageslogged to this file depends on the configuration value “loglevel”.
active_jobs In this subdirectory, the execution daemon creates a directoryfor each task of the job that is to be started on this executionhost.
jobs In this subdirectory, the execution daemon spools the jobobjects it uses internally.
job_scripts In this subdirectory, the execution daemon stores the jobscripts of all jobs that have tasks that are to be started on thisexecution host.

Grid Engine Administrator’s Guide v 8.7.0 6

1 Navigating and Understanding

FIGURE 4: Overview of the Active Jobs Spooling Sub Directory
Table 4: Active Jobs Subdirectory Details

Directory or File Description
<job id>.<task id> For each task of a job such a subdirectory is created.
<pe_task_id>.<hostname> For each parallel task of a tightly integrated parallel job, theexecution daemon creates such a subdirectory right beforeit starts the parallel task. This subdirectory contains thesame files as the “active_jobs” directory, except for the“pe_hostfile”.

FIGURE 5: Overview of the Jobs Spooling Subdirectory
The jobs spooling directory is split up into this structure because most filesystems becomeslow when there are too many files or subdirectories in one directory. This wouldn’t be aproblem on the execution host, as there will never be more than 10,000 tasks on one host,but the same spooling functions are used with classic spooling in the Qmaster, too.
Grid Engine Administrator’s Guide v 8.7.0 7

1 Navigating and Understanding

FIGURE 6:Overview of the Job Scripts Spooling Subdirectory
1.1.2 Displaying Status Information

Altair Grid Engine is a distributed system that handles and interacts with different entitiessuch as jobs, hosts, and queues.
• queues can have different states, depending on whether they are usable, non-usable,or they are in any special mode (such as maintenance).
• With jobs, the states indicate things such as whether they are already started andwhen, whether the jobs are running or whether they are in any special state (such asthe suspended state).
• Hosts do not have an external state model, but they provide status information (suchas CPU or memory usage).

This section describes how the states and the status for the different objects can be dis-played and how they are interpreted.
Displaying Job Status Information

After submitting a job, Altair Grid Engine handles the complete lifetime of the job and ex-presses the condition of the job in various predefined job states. A job can have multiplecombined states, hence the total number of different job states is very high. Use the qstatcommand to show job states:
> qstat
job-ID prior name user state submit/start at queue slots ja-task-ID

13 0.50500 sleep daniel r 05/24/2011 09:57:07 all.q@host2 1
14 0.50500 sleep daniel r 05/24/2011 09:57:07 all.q@host3 1
15 0.50500 sleep daniel r 05/24/2011 09:57:07 all.q@host1 1 1
15 0.50500 sleep daniel r 05/24/2011 09:57:07 all.q@host1 1 2
15 0.50500 sleep daniel r 05/24/2011 09:57:07 all.q@host1 1 3
15 0.50500 sleep daniel r 05/24/2011 09:57:07 all.q@host1 1 4
15 0.50500 sleep daniel r 05/24/2011 09:57:07 all.q@host1 1 5
15 0.50500 sleep daniel r 05/24/2011 09:57:07 all.q@host1 1 6
12 0.60500 env daniel qw 05/24/2011 09:56:45 1

Grid Engine Administrator’s Guide v 8.7.0 8

1 Navigating and Understanding

The job state is displayed in the state column. In this example, there are several jobs run-ning (r) and one job is pending (queue waiting, qw).
Other basic status information is the queue instance in which the job is running (queue), thesubmit time (if the job is in the queued state) and the start time (if the job was dispatchedalready to queue instances).
Understanding theVarious Job States Altair Grid Engine job states can be a combinationof different states. For example, there are different hold states that can be applied to jobsduring submit time or afterwards, when they are running. A hold state prevents a job frombeing considered during a scheduling run, therefore it affects a running job only when it isrescheduled.
The following example illustrates the hold state in combination with other states:
Here a job is submitted with a user hold (-h):
> qsub -h -b y sleep 120
Your job 16 ("sleep") has been submitted

After submission, the job stays in the combined hold queued-waiting state.
> qstat
job-ID prior name user state submit/start at queue slots ja-task-ID

16 0.00000 sleep daniel hqw 05/24/2011 10:33:17 1

If the hold is removed and the job was dispatched, it is in the running state. When thena user hold for the job is requested, the qstat command shows the combined state hold
running.
> qrls 16
modified hold of job 16

> qstat
job-ID prior name user state submit/start at queue slots ja-task-ID

16 0.00000 sleep daniel qw 05/24/2011 10:33:17 1

> qstat
job-ID prior name user state submit/start at queue slots ja-task-ID

16 0.55500 sleep daniel r 05/24/2011 10:34:37 all.q@host 1 1

> qhold 16
modified hold of job 16

> qstat
job-ID prior name user state submit/start at queue slots ja-task-ID

Grid Engine Administrator’s Guide v 8.7.0 9

1 Navigating and Understanding

16 0.55500 sleep daniel hr 05/24/2011 10:34:37 all.q@host 1 1

The following table provides an overview of the Altair Grid Engine job states, which canoccur alone or in combination with other states:
Table 5: Overview of Job States

State Description
r Running state. The job is running on the execution host.t Job is in a transferring state. The job is sent to the execution host.d The job is in a deletion state. The job is currently deleted by the system.E The job is in an error state.R The job was restarted.T The job is in a suspended state because of threshold limitations.w The job is in a waiting state.h The job is in a hold state. The hold state prevents scheduling of the job.S The job is in an automatic suspended state. The job suspension was triggeredindirectly.s The job is in a manual suspend state. The job suspension was triggeredmanually.z The job is in a zombie state.

The figure below illustrates a simple but common job state transition from queued-waiting(qw), to transferring (t) and running (r). While running, the job switches to the suspendedstate (s) and back.

FIGURE 4: Simple Job State Transition
Displaying Host Status Information

Status information of hosts can be displayed with the qhost command. Hosts themselveshave no predefined explicit states like jobs or queues. Depending on the internal host state,the queue instances on that host change its state. When for example a host is not reach-able anymore, all queue instances on that host go into the alarm state (a). Nevertheless sta-tus information and host topology-based information remain available. Examples of statusinformation are the architecture, the compute load, and memory state. Examples of host
Grid Engine Administrator’s Guide v 8.7.0 10

1 Navigating and Understanding

topology-based information are the number of sockets, cores and hardware-supportedthreads (the latter on Linux and Solaris only).
Use the qhost command to show host status information, as in the following example:
> qhost
HOSTNAME ARCH NCPU NSOC NCOR NTHR LOAD MEMTOT MEMUSE SWAPTO SWAPUS
--
global - - - - - - - - - -
tanqueray lx-amd64 2 1 2 2 0.27 7.7G 2.2G 0.0 0.0
unertl lx-amd64 1 1 1 1 0.00 997.5M 299.0M 2.0G 0.0

In order to get SGE 6.2u5 compatible output (without NSOC, NCOR, NTHR), use the -ncbswitch (e.g. qhost -ncb).
Note

More detailed host status information can be shown with the -F argument. In addition tothe default qhost information, host-specific values (hl:) are also shown.
> qhost -F
HOSTNAME ARCH NCPU NSOC NCOR NTHR LOAD MEMTOT MEMUSE SWAPTO SWAPUS

global - - - - - - - - - -
host1 lx-amd64 8 1 8 8 0.00 491.9M 51.9M 398.0M 0.0

hl:arch=lx-amd64
hl:num_proc=8.000000
hl:mem_total=491.898M
hl:swap_total=397.996M
hl:virtual_total=889.895M
hl:load_avg=0.000000
hl:load_short=0.000000
hl:load_medium=0.000000
hl:load_long=0.000000
hl:mem_free=439.961M
hl:swap_free=397.996M
hl:virtual_free=837.957M
hl:mem_used=51.938M
hl:swap_used=0.000
hl:virtual_used=51.938M
hl:cpu=0.000000
hl:m_topology=SCCCCCCCC
hl:m_topology_inuse=SCCCCCCCC
hl:m_socket=1.000000
hl:m_core=8.000000
hl:m_thread=8.000000
hl:np_load_avg=0.000000
hl:np_load_short=0.000000
hl:np_load_medium=0.000000
hl:np_load_long=0.000000

Grid Engine Administrator’s Guide v 8.7.0 11

1 Navigating and Understanding

Understanding the Various Host States

The following descriptions refer to the column headers output by the qhost command:
> qhost
HOSTNAME ARCH NCPU NSOC NCOR NTHR LOAD MEMTOT MEMUSE SWAPTO SWAPUS
--

• HOSTNAME: The names of the available hosts.
• ARCH: The host architecture shown by the qhost command is either an abbreviation ofthe operating system used on the execution host (e.g. aix51) or a combination of theoperating system and the processor architecture (e.g. sol-amd64).
• NCPU: The number of CPUs for a system is determined by an operating system call. Inmost cases, it is the number of available CPU cores on a system.
• The next three entries are execution host topology related information and are onlyavailable on Linux hosts (with a kernel version >= 2.6.16) and Solaris hosts.

– NSOC: number of CPU sockets on the execution host
– NCOR: total number of compute cores on the execution host
– NTHR: hardware supported threads on the execution host

• LOAD: The machine load is the average length of the operating system run-queue(runnable processes) in the last 5minutes (on someoperating systems, thismaydiffer).The source is the load value load_avg.
• The currentmemory status is displayed in the MEMTOT and MEMUSE columns.

– MEMTOT: total amount of memory
– MEMUSE: used memory

• Virtual memory specific information is shown in the SWAPTO and SWAPUS columns.
– SWAPTO: total amount of swap space
– SWAPUS: used swap space

Your own host-based load values can be added by declaring the load value name andtyping in the complex configuration (qconf -mc) and initializing the load value either inthe execution host configuration (qconf -me <hostname>) or by installing a load sensorat the execution host.

Note

The following table explains these additional standard load values.

Grid Engine Administrator’s Guide v 8.7.0 12

1 Navigating and Understanding

Table 6: Additional Standard Load Values
State Description
arch The architecture string (usually contains the OS and optionally theISA).num_proc The number of detected processing units.mem_total The total amount of installed memory.swap_total The total amount of installed swap space.virtual_total Total amount of virtual memory (memory + swap space).load_avg Same as load_medium.load_short Average load value in the last minute (time interval may differ onOS; source on Linux is /proc/loadavg).load_medium Average load value in the last 5 minutes (time interval may differ onOS; source on Linux is /proc/loadavg).load_long Average load value in the last 15 minutes (time interval may differon OS; source on Linux is /proc/loadavg).mem_free The amount of unused memory.swap_free The amount of unused swap space.virtual_free The amount of unused virtual memory.mem_used The amount of occupied memory.swap_used The amount of occupied swap space.virtual_used The amount of occupied virtual memory.cpu Current amount of CPU usage.m_topology Execution host topology information (S means socket, C core, and Thardware-supported thread).m_topology_inuse Execution host topology like above. Additionally occupied (via corebinding) cores are displayed in lowercase letters.m_socket The number of CPU sockets.m_core The total number of CPU cores.m_thread The total number of hardware-supported threads.np_load_avg Medium average divided by number of processors (num_proc).np_load_short Short load average divided by the number of processors(num_proc).np_load_medium Medium load average divided by the number of processors(num_proc).np_load_long Long load average divided by the number of processors(num_proc).display_win_gui On Windows (win-x86) only, this value shows whether theexecution host is able to display the GUI of a job on the currentlyvisible desktop.

Displaying Queue Status Information
The qstat command shows queue status information.
Use the queue selection switch -q to show all queue instances of the all.q.
> qstat -q all.q -f
queuename qtype resv/used/tot. load_avg arch states

Grid Engine Administrator’s Guide v 8.7.0 13

1 Navigating and Understanding

--
all.q@host1 BIPC 0/0/10 0.00 lx-amd64
--
all.q@host2 BIPC 0/0/10 0.08 lx-amd64
--
all.q@host3 BIPC 0/0/10 0.01 lx-amd64

Understanding the Various Queue States

The following table shows the different queue states, which can also occur in combination.
Table 7: Queue States

State Description
a Alarm state (because of load threshold, or when host is not reachable)A Alarm stateu Unknown state: The execution daemon is not reachable.C Calendar suspendeds SuspendedS Automatically suspendedd Manually disabled (qmod -d)D Automatically disabledE Error state

1.2 Understanding a Default Installation

These sections describe common parts of a default Altair Grid Engine installation. Topicscovered include the queue, parallel environment, user sets, host groups and complex at-tributes.
1.2.1 Default Queue

All hosts are by default members of the queue all.q, where every installed execution hosthas as many slots as the number of CPUs reported by the operating system. This default-
queue is configured to run batch, interactive and also parallel jobswith the C-Shell as default.
See Configuring Queues for more information, such as how to change the queue.
qconf -sq all.q
qname all.q
hostlist @allhosts
seq_no 0
load_thresholds np_load_avg=1.75
suspend_thresholds NONE
nsuspend 1
suspend_interval 00:05:00
priority 0

Grid Engine Administrator’s Guide v 8.7.0 14

1 Navigating and Understanding

min_cpu_interval 00:05:00
processors UNDEFINED
qtype BATCH INTERACTIVE
ckpt_list NONE
pe_list make
rerun FALSE
slots 1,[host1=4],[host2=1],[host3=1],[host4=1]
tmpdir /tmp
shell /bin/sh
prolog NONE
epilog NONE
shell_start_mode posix_compliant
starter_method NONE
suspend_method NONE
resume_method NONE
terminate_method NONE
notify 00:00:60
owner_list NONE
user_lists NONE
xuser_lists NONE
subordinate_list NONE
complex_values NONE
projects NONE
xprojects NONE
calendar NONE
initial_state default
s_rt INFINITY
h_rt INFINITY
s_cpu INFINITY
h_cpu INFINITY
s_fsize INFINITY
h_fsize INFINITY
s_data INFINITY
h_data INFINITY
s_stack INFINITY
h_stack INFINITY
s_core INFINITY
h_core INFINITY
s_rss INFINITY
h_rss INFINITY
s_vmem INFINITY
h_vmem INFINITY

1.2.2 Default PE

There is also a predefined parallel environment configured named make which is also al-ready added to the default queue. This pe utilizes at most 999 slots and allocates themwith
round_robin as the allocation rule.

Grid Engine Administrator’s Guide v 8.7.0 15

1 Navigating and Understanding

See User Guide -> Parallel environments for more information on how to handle thoseparallel environments.
qconf -sp make
pe_name make
slots 999
used_slots 0
bound_slots 0
user_lists NONE
xuser_lists NONE
start_proc_args NONE
stop_proc_args NONE
per_pe_task_prolog NONE
per_pe_task_epilog NONE
allocation_rule $round_robin
control_slaves TRUE
job_is_first_task FALSE
urgency_slots min
accounting_summary TRUE
daemon_forks_slaves FALSE
master_forks_slaves FALSE

1.2.3 Default User Set Lists

By default, there are three different user set lists defined. arusers and deadlineusers are
access lists and defaultdepartment is a department.
All members of the arusers user set list and also the Altair Grid Engine operators and man-agers are allowed to do advance reservations (User Guide -> Reservations).
All members of the deadlineusers user set list and also the Altair Grid Engine operators andmanagers are allowed to submit deadline jobs.
See Managing User Access for more information.
qconf -sul
arusers
deadlineusers
defaultdepartment

1.2.4 Default Host Group List

@allhosts is the only predefined host group list. All hosts known at install time of the Qmas-ter will be members of this host group list.
qconf -shgrpl
@allhosts

Grid Engine Administrator’s Guide v 8.7.0 16

1 Navigating and Understanding

1.2.5 Default Complex Attributes

Many predefined “complex attributes” are available.
See Utilizing Complexes and Load Sensors for additional information.
qconf -sc
#name shortcut type rel. req. cons. def. urg. aapre aff. do_rep. is_sta.
#---
arch a RESTRING ## YES NO NONE 0 NO 0.00 YES YES
calendar c RESTRING ## YES NO NONE 0 NO 0.00 YES NO
cpu cpu DOUBLE >= YES NO 0 0 NO 0.00 YES NO
d_rt d_rt TIME <= YES NO 0:0:0 0 NO 0.00 YES NO
display_win_gui dwg BOOL ## YES NO 0 0 NO 0.00 YES NO
docker dock BOOL == YES NO 0 0 NO 0.00 YES NO
docker_api_version dockapi DOUBLE <= YES NO 0 0 NO 0.00 YES NO
docker_images dockimg RESTRING == YES NO NONE 0 NO 0.00 YES NO
docker_version dockver DOUBLE <= YES NO 0 0 NO 0.00 YES NO
h_core h_core MEMORY <= YES NO 0 0 NO 0.00 YES NO
h_cpu h_cpu TIME <= YES NO 0:0:0 0 NO 0.00 YES NO
h_data h_data MEMORY <= YES NO 0 0 NO 0.00 YES NO
h_fsize h_fsize MEMORY <= YES NO 0 0 NO 0.00 YES NO
h_rss h_rss MEMORY <= YES NO 0 0 NO 0.00 YES NO
h_rt h_rt TIME <= YES NO 0:0:0 0 NO 0.00 YES NO
h_stack h_stack MEMORY <= YES NO 0 0 NO 0.00 YES NO
h_vmem h_vmem MEMORY <= YES NO 0 0 NO 0.00 YES NO
hostname h HOST ## YES NO NONE 0 NO 0.00 YES NO
load_avg la DOUBLE >= NO NO 0 0 NO 0.00 YES NO
load_long ll DOUBLE >= NO NO 0 0 NO 0.00 YES NO
load_medium lm DOUBLE >= NO NO 0 0 NO 0.00 YES NO
load_short ls DOUBLE >= NO NO 0 0 NO 0.00 YES NO
m_cache_l1 mcache1 MEMORY <= YES NO 0 0 NO 0.00 YES YES
m_cache_l2 mcache2 MEMORY <= YES NO 0 0 NO 0.00 YES YES
m_cache_l3 mcache3 MEMORY <= YES NO 0 0 NO 0.00 YES YES
m_core core INT <= YES NO 0 0 NO 0.00 YES YES
m_gpu mgpu INT <= YES NO 0 0 NO 0.00 YES YES
m_mem_free mfree MEMORY <= YES YES 0 0 YES 0.00 YES NO
m_mem_free_n0 mfree0 MEMORY <= YES YES 0 0 YES 0.00 YES NO
m_mem_free_n1 mfree1 MEMORY <= YES YES 0 0 YES 0.00 YES NO
m_mem_free_n2 mfree2 MEMORY <= YES YES 0 0 YES 0.00 YES NO
m_mem_free_n3 mfree3 MEMORY <= YES YES 0 0 YES 0.00 YES NO
m_mem_total mtotal MEMORY <= YES YES 0 0 YES 0.00 YES YES
m_mem_total_n0 mmem0 MEMORY <= YES YES 0 0 YES 0.00 YES YES
m_mem_total_n1 mmem1 MEMORY <= YES YES 0 0 YES 0.00 YES YES
m_mem_total_n2 mmem2 MEMORY <= YES YES 0 0 YES 0.00 YES YES
m_mem_total_n3 mmem3 MEMORY <= YES YES 0 0 YES 0.00 YES YES
m_mem_used mused MEMORY >= YES NO 0 0 NO 0.00 YES NO
m_mem_used_n0 mused0 MEMORY >= YES NO 0 0 NO 0.00 YES NO
m_mem_used_n1 mused1 MEMORY >= YES NO 0 0 NO 0.00 YES NO
m_mem_used_n2 mused2 MEMORY >= YES NO 0 0 NO 0.00 YES NO

Grid Engine Administrator’s Guide v 8.7.0 17

1 Navigating and Understanding

m_mem_used_n3 mused3 MEMORY >= YES NO 0 0 NO 0.00 YES NO
m_numa_nodes nodes INT <= YES NO 0 0 NO 0.00 YES YES
m_socket socket INT <= YES NO 0 0 NO 0.00 YES YES
m_thread thread INT <= YES NO 0 0 NO 0.00 YES YES
m_topology topo RESTRING ## YES NO NONE 0 NO 0.00 YES YES
m_topology_inuse utopo RESTRING ## YES NO NONE 0 NO 0.00 YES YES
m_topology_numa unuma RESTRING ## YES NO NONE 0 NO 0.00 YES YES
mem_free mf MEMORY <= YES NO 0 0 NO 0.00 YES NO
mem_total mt MEMORY <= YES NO 0 0 NO 0.00 YES YES
mem_used mu MEMORY >= YES NO 0 0 NO 0.00 YES NO
min_cpu_interval mci TIME <= NO NO 0:0:0 0 NO 0.00 YES NO
np_load_avg nla DOUBLE >= NO NO 0 0 NO 0.00 YES NO
np_load_long nll DOUBLE >= NO NO 0 0 NO 0.00 YES NO
np_load_medium nlm DOUBLE >= NO NO 0 0 NO 0.00 YES NO
np_load_short nls DOUBLE >= NO NO 0 0 NO 0.00 YES NO
num_proc p INT ## YES NO 0 0 NO 0.00 YES YES
qname q RESTRING ## YES NO NONE 0 NO 0.00 YES NO
rerun re BOOL ## NO NO 0 0 NO 0.00 YES NO
s_core s_core MEMORY <= YES NO 0 0 NO 0.00 YES NO
s_cpu s_cpu TIME <= YES NO 0:0:0 0 NO 0.00 YES NO
s_data s_data MEMORY <= YES NO 0 0 NO 0.00 YES NO
s_fsize s_fsize MEMORY <= YES NO 0 0 NO 0.00 YES NO
s_rss s_rss MEMORY <= YES NO 0 0 NO 0.00 YES NO
s_rt s_rt TIME <= YES NO 0:0:0 0 NO 0.00 YES NO
s_stack s_stack MEMORY <= YES NO 0 0 NO 0.00 YES NO
s_vmem s_vmem MEMORY <= YES NO 0 0 NO 0.00 YES NO
seq_no seq INT ## NO NO 0 0 NO 0.00 YES NO
slots s INT <= YES YES 1 1000 YES 0.00 YES NO
swap_free sf MEMORY <= YES NO 0 0 NO 0.00 YES NO
swap_rate sr MEMORY >= YES NO 0 0 NO 0.00 YES NO
swap_rsvd srsv MEMORY >= YES NO 0 0 NO 0.00 YES NO
swap_total st MEMORY <= YES NO 0 0 NO 0.00 YES YES
swap_used su MEMORY >= YES NO 0 0 NO 0.00 YES NO
tmpdir tmp RESTRING ## NO NO NONE 0 NO 0.00 YES NO
virtual_free vf MEMORY <= YES NO 0 0 NO 0.00 YES NO
virtual_total vt MEMORY <= YES NO 0 0 NO 0.00 YES YES
virtual_used vu MEMORY >= YES NO 0 0 NO 0.00 YES NO

1.3 Understanding Key Altair Grid Engine Configuration Objects

There are four key configuration objects that define the outline of a Altair Grid Engine clus-ter.
• cluster configuration• scheduler configuration• host configurations• queues

Grid Engine Administrator’s Guide v 8.7.0 18

1 Navigating and Understanding

Some of them are created and initialized during the installation process and some of themhave to be created after the installation to set up necessary policies in the cluster.
1.3.1 The Cluster Configuration

The cluster configuration is a configuration object that defines global aspects of the clustersetup. Modification of this object requires manager privileges.
Certain settings of the global cluster configuration can be specified differently for individualsubmit and execution hosts in a cluster. For these hosts a local configuration object can becreated. The local configuration object defines the parameters that should deviate fromthe global configuration.
The available parameters of the global and local configuration can be found in the chapterUnderstanding and Modifying the Cluster Configuration.
1.3.2 The Scheduler Configuration

All parameters influencing the scheduler component of Altair Grid Engine are summarizedin the scheduler configuration. Only managers of a Altair Grid Engine cluster are allowedto change scheduler settings.
Scheduler configuration parameters are explained in in the chapter Understanding andModifying the Altair Grid Engine Scheduler Configuration.
1.3.3 Host and Queue Configurations

Hosts and cluster queues define the execution environment where jobs will be executed.The host configuration object defines aspects of an execution host. Cluster queues are usedto partition a group of hosts and to provide more detailed settings that jobs require to beexecuted properly.
Read the section Configuration Properties of Hosts and Queues to get more informationon how to set up and configure those objects.

1.4 Navigating the ARCo Database

1.4.1 Accessing the ARCo Database

Use a database front end to access the ARCo database, e.g. a reporting tool, or spreadsheet.
During dbwriter installation, a user arco_read has been created having read access to theARCo database. This arco_read user should be used to connect a reporting tool to the ARCodatabase.
The examples in the following sections use a PostgreSQL database and the psql command-line tool.

Grid Engine Administrator’s Guide v 8.7.0 19

1 Navigating and Understanding

1.4.2 Views to the Database

To make querying data from the ARCo database easier, a number of views have been cre-ated on the ARCo tables.
It is recommended to use these views where possible.
The following views are available:

• Accounting
– view_accounting: Accounting information per job.

• Job-related information
– view_job_log: The job logging.
– view_job_times: Timing information for jobs.
– view_jobs_completed: Number of jobs completed over time.

• Advance reservation data
– view_ar_attribute: Attributes of advance reservations.
– view_ar_log: The AR log (state changes of an AR).
– view_ar_resource_usage: Resources requested by advance reservations.
– view_ar_time_usage: Reserved time vs. time actually used by slots.
– view_ar_usage: Timing information of advance reservations.

• Values related to Altair Grid Engine configuration objects
– view_department_values: Values related to departments.
– view_group_values: Values related to user groups.
– view_host_values: Values related to hosts.
– view_project_values: Values related to projects.
– view_queue_values: Values related to queue instances.
– view_user_values: Values related to users.

• Statistics
– view_statistic: ARCo statistics.

Accounting The following detailed view documentation is based on a PostgreSQLdatabase. The database structure is the same for all supported database systems, but withthe attribute types there are slight differences.
view_accounting

The view_accounting gives basic accounting information for finished jobs. More detailedinformation, e.g. the rusage (ru_*) attributes can be retrieved from the sge_job_usage table.

Grid Engine Administrator’s Guide v 8.7.0 20

1 Navigating and Understanding

Table 8: Information Available from view_accounting

Attribute Type Description
job_number bigint the job idtask_number bigint the array task idpe_taskid text the ID of a task of a tightly integrated paralleljobname text the job namegroup text the user group of the job owner (submitter)username text the user name of the job owner (submitter)account text the account string (see qsub -A option)project text the project the job belongs todepartment text the department the job owner belongs tosubmission_time timestamp withouttime zone the time when the job was submitted
ar_parent numeric(38,0) a reference to the advance reservation thejob is running in.start_time timestamp withouttime zone the time when the job (the array task) wasstartedend_time timestamp withouttime zone the time when the job (the array task)finishedwallclock_time double precision the job run time in secondscpu double precision the CPU time consumed in secondsmem double precision the integral memory usage in GB secondsio double precision the amount of data transferred ininput/output operations (available only oncertain architectures)iow double precision the I/O wait time in seconds (available onlyon certain architectures)maxvmem double precision the maximum vmem size in bytesexit_status integer the exit status of the job

See also the man page accounting.5 for more information.
Example:
Find how many jobs have been run and how much CPU time has been consumed duringthe last hour, listed per user:
SELECT username, count(*) AS jobs, sum(cpu)
FROM view_accounting
WHERE end_time > date_trunc('hour', now())
GROUP BY username
ORDER BY username;

username | jobs | cpu

peter | 175 | 10.612507
sgetest | 181 | 4.792978

Grid Engine Administrator’s Guide v 8.7.0 21

1 Navigating and Understanding

sgetest1 | 186 | 4.956504
sgetest2 | 276 | 7.054217

Job-related information

In addition to the chapter Views to the Database, there are views showing more details ofjobs, such as the job log, job timing information and a summary about finished jobs.
view_job_log

The job log shows detailed status information about the whole life cycle of a job, from jobsubmission to the job end.
Attribute Type Description

job_number bigint the job id
task_number bigint the array task id
pe_taskid text the ID of a task of a tightly integrated parallel job
name text the job name
group text the user group of the job owner
username text the name of the job owner
account text the account string (see qsub -A option)
project text the project the job was running in
department text the department the job owner belongs to
time timestamp without time zone the time when a job log event occurred
event text name of the job log event (e.g. pending, delivered, finished)
state text the job state (e.g. r for running)
initiator text the initiator of the event, e.g. the name of the operator who suspended thejob
host text the host from which the event was triggered

1.5 message text a message describing the event

: Information Available from the Job Log
Example:
SELECT job_number, time, event, state, initiator, message
FROM view_job_log
WHERE job_number = 59708
ORDER BY time;

Grid Engine Administrator’s Guide v 8.7.0 22

1 Navigating and Understanding

job_number | time | event | state | initiator | message

59708 | 2011-05-24 | pending | | peter | new job

| 12:02:17 | | | |
59708 | 2011-05-24 | sent | t | master | sent to execd

| 12:02:35 | | | |
59708 | 2011-05-24 | delivered | r | master | job received by execd

| 12:02:36 | | | |
59708 | 2011-05-24 | suspended | r | peter |

| 12:02:44 | | | |
59708 | 2011-05-24 | unsuspended | r | peter |

| 12:03:01 | | | |
59708 | 2011-05-24 | finished | r | execution | job exited

| 12:03:35 | | | daemon |
59708 | 2011-05-24 | finished | r | master | job waits for schedds

| 12:03:35 | | | | deletion
59708 | 2011-05-24 | deleted | T | scheduler | job deleted by schedd

| 12:03:35 | | | |

view_job_times

The view_job_times gives timing information about a job, such as when a jobwas submitted,started, or finished as well as the job run time, the total turnaround time, and so on.
Table 10: Information Available from view_job_times

Attribute Type Description
job_number bigint the job idtask_number bigint the array task ID (-1 for non-array jobs)name text the job namegroupname text the user group of the job ownerusername text the user name of the job owneraccount text the account string (see qsub -A option)project text the project the job was belonging todepartment text the department the job owner belongs tosubmission_time timestamp without timezone the job submission time
ar_parent numeric(38,0) reference to an advance reservation thejob was running instart_time timestamp without timezone the time when the job was started
end_time timestamp without timezone the time when the job finished
wait_time interval the time between job submission and jobstart as time interval (e.g. 00:00:10)turnaround_time interval the total job turnaround time (time fromjob submission until job end as timeinterval)job_duration interval the job run time as time interval

Grid Engine Administrator’s Guide v 8.7.0 23

1 Navigating and Understanding

Attribute Type Description
wallclock_time integer the job run time in secondsexit_status integer the exit status of the job

Example: Look for jobs that were pending more than 3 minutes before being scheduled:
SELECT job_number, task_number, submission_time, wait_time, start_time, end_time
FROM view_job_times
WHERE wait_time > '00:03:00'
ORDER BY wait_time;

job_ | task_ | submission_time |wait_time | start_time | end_time
number| number | | | |
--
4732 | 34 | 2011-05-23 14:32:43 | 00:03:07 | 2011-05-23 14:35:50 | 2011-05-23 14:36:00
4695 | -1 | 2011-05-23 14:28:49 | 00:03:08 | 2011-05-23 14:31:57 | 2011-05-23 14:32:12
4732 | 35 | 2011-05-23 14:32:43 | 00:03:09 | 2011-05-23 14:35:52 | 2011-05-23 14:36:02
4732 | 36 | 2011-05-23 14:32:43 | 00:03:17 | 2011-05-23 14:36:00 | 2011-05-23 14:36:10
4732 | 37 | 2011-05-23 14:32:43 | 00:03:20 | 2011-05-23 14:36:03 | 2011-05-23 14:36:13
4732 | 38 | 2011-05-23 14:32:43 | 00:03:28 | 2011-05-23 14:36:11 | 2011-05-23 14:36:21

view_jobs_completed

The view_jobs_completed shows the number of jobs finished per hour.
Table 11: Information Available from view_jobs_completed

Attribute Type Description
time timestamp withouttime zone start time of a time interval
completed bigint number of jobs completed between time andtime + 1 hourar_parent numeric(38,0) if advance reservations are used, thecompleted jobs are listed per time interval andadvance reservation

Example: Show number of jobs that completed during the last 24 hours, summed up perhour:
SELECT *
FROM view_jobs_completed
WHERE time > date_trunc('day', now());

time | completed | ar_parent
--
2011-05-24 01:00:00 | 2712 | 0

Grid Engine Administrator’s Guide v 8.7.0 24

1 Navigating and Understanding

2011-05-24 02:00:00 | 2715 | 0
2011-05-24 03:00:00 | 2713 | 0
2011-05-24 04:00:00 | 2712 | 0
2011-05-24 05:00:00 | 2715 | 0
2011-05-24 06:00:00 | 2712 | 0
2011-05-24 07:00:00 | 2714 | 0
2011-05-24 08:00:00 | 2713 | 0
2011-05-24 09:00:00 | 2178 | 0
2011-05-24 10:00:00 | 1574 | 0
2011-05-24 10:00:00 | 3 | 1
2011-05-24 11:00:00 | 1109 | 0
2011-05-24 12:00:00 | 201 | 0

Advance Reservation Data

view_ar_attribute

The view_ar_attribute shows the basic attributes of an advance reservation.
Table 12: Information Available from view_ar_attribute

Attribute Type Description
ar_number bigint the AR numberowner text the owner of the advance reservationsubmission_time timestamp withouttime zone the time when the AR was submitted
name text the name of the araccount text the account string (see qrsub -A option)start_time timestamp withouttime zone the start time of the advance reservation
end_time timestamp withouttime zone the end time of the advance reservation
granted_pe text name of a parallel environment which wasgranted to the advance reservation

Example:
SELECT * FROM view_ar_attribute;

ar_ | owner | submission_ | name | account | start_ | end_ | granted_pe
number | | time | | | time | time |
--

1 | peter | 2011-05-24 | | sge | 2011-05-24 | 2011-05-24 |
| | 09:59:48 | | | 10:30:00 | 11:30:00 |

view_ar_log

Grid Engine Administrator’s Guide v 8.7.0 25

1 Navigating and Understanding

Table 13: Information Available from view_ar_log

Attribute Type Description
ar_number bigint the AR numbertime timestamp without timezone time when the event logged occurred
event text type of the eventstate text the state of the advance reservationmessage text a message describing the event

Example:
SELECT * FROM view_ar_log;

ar_ | time | event | state | message
number | | | |

1 | 2011-05-24 09:59:48 | RESOURCES UNSATISFIED | W | AR resources unsatisfied
1 | 2011-05-24 10:01:11 | RESOURCES SATISFIED | w | AR resources satisfied
1 | 2011-05-24 10:30:00 | START TIME REACHED | r | start time of AR reached

view_ar_resource_usage

Table 14: Information Available from view_ar_resource_usage

Attribute Type Description
ar_number bigint the AR numbervariable text name of a resource requested by the arvalue text requested value of the named resource

Example:
SELECT * FROM view_ar_resource_usage;

ar_number | variable | value

1 | arch | sol-amd64

view_ar_time_usage

The view_ar_time shows the time resources were held by an advance reservation vs. thetime these resources had actually been in use by jobs.

Grid Engine Administrator’s Guide v 8.7.0 26

1 Navigating and Understanding

Table 15: Information Available from view_ar_time_usage

Attribute Type Description
ar_id numeric(38,0) the AR numberjob_duration interval actual usage of the reserved resources by jobsar_duration interval duration (time interval) of the advance reservation

Example:
SELECT * FROM view_ar_time_usage;

ar_id | job_duration | ar_duration

1 | 00:03:00 | 01:00:00

view_ar_usage

The view_ar_usage shows the time until which queue instances (cluster queue on host) hadbeen in use by an advance reservation.
Table 16: Information Available from view_ar_usage

Attribute Type Description
ar_number bigint the AR numbertermination_time timestamp withouttime zone time when the AR finished
queue text cluster queue namehostname text host nameslots integer number of slots reserved on the namedqueue instance

Example:
SELECT * FROM view_ar_usage;

ar_number | termination_time | queue | hostname | slots
--
1 | 2011-05-24 11:30:00 | all.q | hookipa | 1

Values Related to Altair Grid Engine Configuration Objects
Arbitrary values can be stored in the ARCo database related to the following Altair GridEngine configuration objects:

• departments• user groups
Grid Engine Administrator’s Guide v 8.7.0 27

1 Navigating and Understanding

• hosts• projects• queues• users
Examples for values related to such objects are

• load values of hosts
• license counters
• number of jobs completed per

– department
– user
– project

• configured vs. free queue slots
• . . . and more.

Object-related values are valid for a certain time period, meaning they have a start and anend time.
A number of views allow easy access to these values.
view_department_values

Table 17: Information Available from view_department_values

Attribute Type Description
department text name of the departmenttime_start timestamp without timezone value is valid from time_start on
time_end timestamp without timezone until time_end
variable text name of the variablestr_value text current value of the variable as stringnum_value double precision current value of the variable as floating pointnumbernum_config double precision configured capacity of the value (forconsumables)

view_group_values

Grid Engine Administrator’s Guide v 8.7.0 28

1 Navigating and Understanding

Table 18: Information Available from view_group_values

Attribute Type Description
groupname text name of the departmenttime_start timestamp without timezone value is valid from time_start on
time_end timestamp without timezone until time_end
variable text name of the variablestr_value text current value of the variable as stringnum_value double precision current value of the variable as floating pointnumbernum_config double precision configured capacity of the value (forconsumables)

view_host_values

Table 19: Information Available from view_host_values

Attribute Type Description
hostname text name of the hosttime_start timestamp without timezone value is valid from time_start on
time_end timestamp without timezone until time_end
variable text name of the variablestr_value text current value of the variable as stringnum_value double precision current value of the variable as floating pointnumbernum_config double precision configured capacity of the value (forconsumables)

Example: Show the average load per hour during the last day:
SELECT hostname, variable, time_end, num_value
FROM view_host_values
WHERE variable = 'h_load' AND time_end > date_trunc('day', now())
ORDER BY time_end, hostname;

hostname | variable | time_end | num_value

halape | h_load | 2011-05-25 01:00:00 | 0.000465116279069767
hapuna | h_load | 2011-05-25 01:00:00 | 0.0108707865168539
hookipa | h_load | 2011-05-25 01:00:00 | 0.0738077368421051
kahuku | h_load | 2011-05-25 01:00:00 | 0.0430645161290322
kailua | h_load | 2011-05-25 01:00:00 | 0.00572881355932204

Grid Engine Administrator’s Guide v 8.7.0 29

1 Navigating and Understanding

kehena | h_load | 2011-05-25 01:00:00 | 0.000635838150289017
rgbfs | h_load | 2011-05-25 01:00:00 | 0.092773
rgbtest | h_load | 2011-05-25 01:00:00 | 0.0061759138888889
halape | h_load | 2011-05-25 02:00:00 | 0
hapuna | h_load | 2011-05-25 02:00:00 | 0.0101123595505618
...

view_project_values

Table 20: Information Available from view_project_values

Attribute Type Description
project text name of the projecttime_start timestamp without timezone value is valid from time_start on
time_end timestamp without timezone until time_end
variable text name of the variablestr_value text current value of the variable as stringnum_value double precision current value of the variable as floating pointnumbernum_config double precision configured capacity of the value (forconsumables)

view_queue_values

A queue value is related to a queue instance (cluster queue on a specific host).
Table 21: Information Available from view_queue_values

Attribute Type Description
qname text name of the cluster queuehostname text name of the hosttime_start timestamp without timezone value is valid from time_start on
time_end timestamp without timezone until time_end
variable text name of the variablestr_value text current value of the variable as stringnum_value double precision current value of the variable as floating pointnumbernum_config double precision configured capacity of the value (forconsumables)

Example: Show the configured capacity for slots and the actually used slots per queue in-stance over the last hour:

Grid Engine Administrator’s Guide v 8.7.0 30

1 Navigating and Understanding

SELECT qname, hostname, time_end, variable, num_config, num_value
FROM view_queue_values
WHERE variable = 'slots' AND time_end > date_trunc('hour', now())
ORDER BY time_end, hostname;

qname | hostname | time_end | variable | num_config | num_value

all.q | rgbfs | 2011-05-25 08:00:01 | slots | 40 | 0
all.q | rgbtest | 2011-05-25 08:00:01 | slots | 60 | 3
all.q | hapuna | 2011-05-25 08:00:05 | slots | 10 | 0
all.q | rgbtest | 2011-05-25 08:00:05 | slots | 60 | 4
all.q | hapuna | 2011-05-25 08:00:13 | slots | 10 | 1
all.q | rgbtest | 2011-05-25 08:00:14 | slots | 60 | 3
all.q | rgbtest | 2011-05-25 08:00:16 | slots | 60 | 3
all.q | rgbtest | 2011-05-25 08:00:16 | slots | 60 | 4
all.q | rgbtest | 2011-05-25 08:00:19 | slots | 60 | 3
all.q | rgbtest | 2011-05-25 08:00:19 | slots | 60 | 4

view_user_values

Table 22: Information Available from view_user_values

Attribute Type Description
username text name of the usertime_start timestamp without timezone value is valid from time_start on
time_end timestamp without timezone until time_end
variable text name of the variablestr_value text current value of the variable as stringnum_value double precision current value of the variable as floating pointnumbernum_config double precision configured capacity of the value (forconsumables)

Example: Show the number of slots finished per hour and user for the last day:
SELECT username, time_end, num_value AS jobs_finished
FROM view_user_values
WHERE variable = 'h_jobs_finished' AND time_end > date_trunc('day', now())
ORDER BY time_end, username;

username | time_end | jobs_finished

peter | 2011-05-25 01:00:00 | 247
sgetest | 2011-05-25 01:00:00 | 245
sgetest1 | 2011-05-25 01:00:00 | 246

Grid Engine Administrator’s Guide v 8.7.0 31

1 Navigating and Understanding

sgetest2 | 2011-05-25 01:00:00 | 245
peter | 2011-05-25 02:00:00 | 249
sgetest | 2011-05-25 02:00:00 | 246
sgetest1 | 2011-05-25 02:00:00 | 245
sgetest2 | 2011-05-25 02:00:00 | 245

Statistics

view_statistic

Shows statistical values.
A statistic has a name and can comprise multiple variables and their values over time.

Table 23: Information Available from view_statistic

Attribute Type Description
name text name of the statistictime_start timestamp without time zone start time for validity of valuetime_end timestamp without time zone end time for validity of valuevariable text name of the variablenum_value double precision value of the variable

Example: Show the average processing speed of dbwriter per hour for the last day:
SELECT time_end AS time, num_value AS lines_per_second
FROM view_statistic
WHERE name = 'dbwriter' AND variable = 'h_lines_per_second'
AND time_end > date_trunc('day', now())
ORDER BY time_end;

time | lines_per_second

2011-05-25 01:00:00 | 3730.85662575603
2011-05-25 02:00:00 | 3590.4583316432
2011-05-25 03:00:00 | 3669.95984348156
2011-05-25 04:00:00 | 3797.30899245708
2011-05-25 05:00:00 | 3659.50091748412
2011-05-25 06:00:00 | 3727.94193461027
2011-05-25 07:00:00 | 3582.6273350896
2011-05-25 08:00:00 | 3687.65701312245

Example: Show daily values for the number of records in the sge_host_values table:
SELECT * FROM view_statistic
WHERE name = 'sge_host_values' AND variable = 'd_row_count';

name | time_start | time_end | variable | num_value

Grid Engine Administrator’s Guide v 8.7.0 32

1 Navigating and Understanding

--
sge_host_values | 2011-05-23 00:00:00 | 2011-05-24 00:00:00 | d_row_count | 82356
sge_host_values | 2011-05-24 00:00:00 | 2011-05-25 00:00:00 | d_row_count | 306459

1.5.1 Database Tables

The views described above are based on the raw data in the ARCo database tables.
The database tables have similar categories as the views:

• Job data and accounting
– sge_job
– sge_job_log
– sge_job_request
– sge_job_usage

• Advance reservation data
– sge_ar
– sge_ar_attribute
– sge_ar_log
– sge_ar_resource_usage
– sge_ar_usage

• Values related to Altair Grid Engine configuration objects
– sge_department
– sge_department_values
– sge_group
– sge_group_values
– sge_host
– sge_host_values
– sge_project
– sge_project_values
– sge_queue
– sge_queue_values
– sge_user
– sge_user_values

• Sharetree Usage
– sge_share_log

• Statistics
– sge_statistic
– sge_statistic_values

• dbwriter internal Data
– sge_checkpoint
– sge_version

Grid Engine Administrator’s Guide v 8.7.0 33

1 Navigating and Understanding

The following detailed table documentation is based on a PostgreSQL database. Thedatabase structure is the same for all supported database systems, but with the attributetypes there are slight differences.
Job Data and Accounting

sge_job

Table 24: Information Available from sge_job

Attribute Type Description
j_id numeric(38,0) not null internal sequential idj_job_number bigint the job numberj_task_number bigint the array task number, -1 for sequentialjobsj_pe_taskid text the ID of tasks of tightly integrated paralleljobs, -1 for sequential jobsj_job_name text the job name from qsub option -Nj_group text the name of the UNIX user group of thesubmit userj_owner text name of the submit userj_account text account string from qsub option -Aj_priority integer the job priority set with qsub option -pj_submission_time timestamp withouttime zone the job submission time
j_project text the project the job is submitted into (qsuboption -P)j_department text the department the job owner is assignedtoj_job_class text if the job was submitted into a job class,the name of the job classj_submit_host text name of the submit hostj_submit_cmd text the command line with which the job wassubmitted

sge_job_log

Table 25: Information Available from sge_job_log

Attribute Type Description
jl_id numeric(38,0) not nulljl_parent numeric(38,0) reference to sge_job.j_idjl_time timestamp withouttime zone time stamp of the job log event
jl_event text name of the job log event (e.g. pending,delivered, finished)jl_state text the job state (e.g. r for running)jl_user text the initiator of the event, e.g. the name ofthe operator who suspended the job
Grid Engine Administrator’s Guide v 8.7.0 34

1 Navigating and Understanding

Attribute Type Description
jl_host text the host from which the event wastriggeredjl_state_time integer time stamp of the event generation, canbe earlier than the jl_timejl_message text a message describing the event

sge_job_request

Table 26: Information Available from sge_job_request

Attribute Type Description
jr_id numeric(38,0) not null internal idjr_parent numeric(38,0) reference to sge_job.j_idjr_variable text name of a complex variable requested bythe jobjr_value text requested value

sge_job_usage

Holds job accounting data.
See also man page accounting.5 for details.

Table 27: Information Available from sge_job_usage

Attribute Type Description
ju_id numeric(38,0) not null internal sequential idju_parent numeric(38,0) reference to sge_job.j_idju_curr_time timestamp withouttime zone time when the accounting record wasrequestedju_qname text cluster queue name in which the job wasrunningju_hostname text name of the host the job was running onju_start_time timestamp withouttime zone start time
ju_end_time timestamp withouttime zone end time
ju_failed integer indicates job start failuresju_exit_status integer the job exit statusju_granted_pe text name of the parallel environment in caseof parallel jobsju_slots integer number of slots grantedju_ru_wallclock double precision job run timeju_ru_utime double precision user CPU time consumedju_ru_stime double precision system CPU time consumed

Grid Engine Administrator’s Guide v 8.7.0 35

1 Navigating and Understanding

Attribute Type Description
ju_ru_maxrss integer attributes delivered by the getrusagesystem call. Depending on the operatingsystem only certain attributes are used.See man page getrusage.2 orgetrusage.3c.ju_ru_ixrss integerju_ru_issmrss integerju_ru_idrss integerju_ru_isrss integerju_ru_minflt integerju_ru_majflt integerju_ru_nswap integerju_ru_inblock integerju_ru_outblock integerju_ru_msgsnd integerju_ru_msgrcv integerju_ru_nsignals integerju_ru_nvcsw integerju_ru_nivcsw integerju_cpu double precision the CPU time usage in seconds.ju_mem double precision the integral memory usage in Gbytes CPUseconds.ju_io double precision the amount of data transferred ininput/output operations. Delivered onlyon certain operating systems.ju_iow double precision the io wait time in seconds. Delivered onlyon certain operating systems.ju_ioops integer the number of io operations. Deliveredonly on certain operating systems.ju_maxvmem double precision the maximum vmem size in bytes.ju_ar_parent numeric(38,0) default 0 reference to sge_ar.ar_idju_qdel_info text information by whom a job was deletedju_maxrss double precision the maximum resident set size in bytesju_maxpss double precision the maximum proportional set size inbytesju_cwd text the job’s current working directoryju_wallclock double precision the wallclock time measured by sge_execdfor the job, excluding suspended times.

sge_job_online_usage

Holds job online usage data (usage information gathered during the job run time)

Grid Engine Administrator’s Guide v 8.7.0 36

1 Navigating and Understanding

Table 28: Information Available from sge_job_online_usage

Attribute Type Description
jou_id numeric(38,0) not null internal sequential idjou_parent numeric(38,0) not null reference to sge_job.j_idjou_curr_time timestamp time when the online usage informationwas generated in sge_execdjou_variable text name of the resource (e.g. cpu,maxvmem)jou_dvalue double precision value of resource jou_variable at timejou_curr_time

Advance Reservation Data

sge_ar

Table 29: Information Available from sge_ar

Attribute Type Description
ar_id numeric(38,0) not null internal sequential idar_number bigint AR numberar_owner text owner of the advancereservationar_submission_time timestamp without timezone submission time of the AR

sge_ar_attribute

Table 30: Information Available from sge_ar_attribute

Attribute Type Description
ara_id numeric(38,0) not null internal sequential idara_parent numeric(38,0) reference to sge_ar.ar_idara_curr_time timestamp withouttime zone time stamp of the AR reporting
ara_name text name of the ARara_account text account string from qrsub -A optionara_start_time timestamp withouttime zone start time of the AR
ara_end_time timestamp withouttime zone end time of the AR
ara_granted_pe text if a parallel environment was requested atAR submission time, the name of thegranted parallel environmentara_sr_cal_week text in case of standing reservation the weekcalendar describing the reservation points

Grid Engine Administrator’s Guide v 8.7.0 37

1 Navigating and Understanding

Attribute Type Description
ara_sr_depth integer in case of standing reservation the SRdepth (the number of reservations beingdone at a time)ara_sr_jmp integer in case of standing reservation the SR ID(a number >= 0), in case of advancereservation -1

sge_ar_log

Table 31: Information Available from sge_ar_log

Attribute Type Description
arl_id numeric(38,0) not null internal sequential idarl_parent numeric(38,0) reference to sge_ar.ar_idarl_time timestamp withouttime zone time stamp of the AR log event
arl_event text type of the eventarl_state text the state of the advance reservationarl_message text a message describing the eventarl_sr_id bigint in case of standing reservation the SR ID(a number >= 0), in case of advancereservation -1

sge_ar_resource_usage

Table 32: Information Available from sge_ar_resource_usage

Attribute Type Description
arru_id numeric(38,0) not null internal sequential idarru_parent numeric(38,0) reference to sge_ar.ar_idarru_variable text name of a resource requested by the ararru_value text requested value of the named resource

sge_ar_usage

The sge_ar_usage table holds the information how many slots were reserved by an AR inwhich queue instance.
Table 33: Information Available from sge_ar_usage

Attribute Type Description
aru_id numeric(38,0) not null internal sequential idaru_parent numeric(38,0) reference to sge_ar.ar_id

Grid Engine Administrator’s Guide v 8.7.0 38

1 Navigating and Understanding

Attribute Type Description
aru_termination_timetimestamp withouttime zone time when the reservation ended
aru_qname text cluster queue namearu_hostname text host namearu_slots integer number of slots reserved

Values Related to Altair Grid Engine Configuration Objects

The Altair Grid Engine object-related tables hold minimal information about the followingconfiguration objects:
• departments• user groups• hosts• projects• queues• users• job classes

Records are inserted as soon as they are needed, e.g. when load values are stored into theARCo database for an execution host, or when user-related values are generated by derivedvalue rules.
sge_department

The sge_department table contains one record per department configured in Altair GridEngine.
Table 34: Information Available from sge_department

Attribute Type Description
d_id numeric(38,0) not null internal sequential idd_department text the department name

sge_group

The sge_group table holds one record per UNIX group name. New groups are generated asneeded when jobs get submitted with a new group name.
Table 35: Information Available from sge_group

Attribute Type Description
g_id numeric(38,0) not null internal sequential idg_group text Unix group name

Grid Engine Administrator’s Guide v 8.7.0 39

1 Navigating and Understanding

sge_host

The sge_host table holds the names of all execution hosts.
Table 36: Information Available from sge_host

Attribute Type Description
h_id numeric(38,0) not null internal sequential idh_hostname text host name

sge_project

The sge_project table holds project names.
Table 37: Information Available from sge_project

Attribute Type Description
p_id numeric(38,0) not null internal sequential idp_project text project name

sge_queue

The sge_queue table holds one record per queue instance.
Table 38: Information Available from sge_queue

Attribute Type Description
q_id numeric(38,0) not null internal sequential idq_qname text cluster queue nameq_hostname text host name

sge_user

Table 39: Information Available from sge_user

Attribute Type Description
u_id numeric(38,0) not null internal sequential idu_user text user name

sge_job_class

Grid Engine Administrator’s Guide v 8.7.0 40

1 Navigating and Understanding

Table 40: Information Available from sge_job_class

Attribute Type Description
jc_id numeric(38,0) not null internal sequential idjc_name text name of the job class

For every Altair Grid Engine configuration object type stored in the ARCo database, there isalso a table storing name/value pairs that hold data related to a configuration object, suchas load values for execution hosts, consumable values for execution hosts or queues, orvalues calculated for users or projects by derived value rules.
The value tables all store the following:

• timing information (start and end time for value validity)• a variable name• a configured capacity, only used for consumable resources• the value of the variable during the reported time interval; can be a string value or anumeric value
sge_department_values

The sge_department_values table holds name/value pairs related to departments.
Information Available from sge_department_values

Table 41: Information Available from sge_department_values

Attribute Type Description
dv_id numeric(38,0) not null internal sequential iddv_parent numeric(38,0) reference to sge_department.d_iddv_time_start timestamp withouttime zone time interval for the validity of thereported valuedv_time_end timestamp withouttime zone time interval for the validity of thereported valuedv_variable text variable namedv_svalue text variable value for string variablesdv_dvalue double precision variable value for numeric variablesdv_dconfig double precision configured capacity for consumables

sge_group_values

The sge_group_values table holds name/value pairs related to Unix user groups.
Table 42: Information Available from sge_group_values

Attribute Type Description
gv_id numeric(38,0) not null internal sequential id

Grid Engine Administrator’s Guide v 8.7.0 41

1 Navigating and Understanding

Attribute Type Description
gv_parent numeric(38,0) reference to sge_group.d_idgv_time_start timestamp withouttime zone time interval for the validity of thereported valuegv_time_end timestamp withouttime zone time interval for the validity of thereported valuegv_variable text variable namegv_svalue text variable value for string variablesgv_dvalue double precision variable value for numeric variablesgv_dconfig double precision configured capacity for consumables

sge_host_values

The sge_host_values table holds name/value pairs related to execution hosts.
Table 43: Information Available from sge_host_values

Attribute Type Description
hv_id numeric(38,0) not null internal sequential idhv_parent numeric(38,0) reference to sge_host.d_idhv_time_start timestamp withouttime zone time interval for the validity of thereported valuehv_time_end timestamp withouttime zone time interval for the validity of thereported valuehv_variable text variable namehv_svalue text variable value for string variableshv_dvalue double precision variable value for numeric variableshv_dconfig double precision configured capacity for consumables

sge_project_values

The sge_project_values table holds name/value pairs related to projects.
Table 44: Information Available from sge_project_values

Attribute Type Description
pv_id numeric(38,0) not null internal sequential idpv_parent numeric(38,0) reference to sge_project.p_idpv_time_start timestamp withouttime zone time interval for the validity of thereported valuepv_time_end timestamp withouttime zone time interval for the validity of thereported valuepv_variable text variable namepv_svalue text variable value for string variablespv_dvalue double precision variable value for numeric variablesdpv_dconfig double precision configured capacity for consumables

Grid Engine Administrator’s Guide v 8.7.0 42

1 Navigating and Understanding

sge_queue_values

The sge_queue_values table holds name/value pairs related to queue instances.
Table 45: Information Available from sge_queue_values

Attribute Type Description
qv_id numeric(38,0) not null internal sequential idqv_parent numeric(38,0) reference to sge_queue.q_idqv_time_start timestamp withouttime zone time interval for the validity of thereported valueqv_time_end timestamp withouttime zone time interval for the validity of thereported valueqv_variable text variable nameqv_svalue text variable value for string variablesqv_dvalue double precision variable value for numeric variablesqv_dconfig double precision configured capacity for consumables

sge_user_values

The sge_user_values table holds name/value pairs related to user names.
Table 46: Information Available from sge_user_values

Attribute Type Description
uv_id numeric(38,0) not null internal sequential iduv_parent numeric(38,0) reference to sge_user.u_iduv_time_start timestamp withouttime zone time interval for the validity of thereported valueuv_time_end timestamp withouttime zone time interval for the validity of thereported valueuv_variable text variable nameuv_svalue text variable value for string variablesuv_dvalue double precision variable value for numeric variablesuv_dconfig double precision configured capacity for consumables

sge_job_class_values

The sge_job_class_values table holds name/value pairs related to job classes.
Table 47: Information Available from sge_job_class_values

Attribute Type Description
jcv_id numeric(38,0) not null internal sequential idjcv_parent numeric(38,0) reference to sge_job_class.jc_idjcv_time_start timestamp withouttime zone time interval for the validity of thereported value

Grid Engine Administrator’s Guide v 8.7.0 43

1 Navigating and Understanding

Attribute Type Description
jcv_time_end timestamp withouttime zone time interval for the validity of thereported valuejcv_variable text variable namejcv_svalue text variable value for string variablesjcv_dvalue double precision variable value for numeric variablesjcv_dconfig double precision configured capacity for consumables

Sharetree Usage

sge_share_log

Table 48: Information Available from sge_share_log

Attribute Type Description
sl_id numeric(38,0) not null internal sequential idsl_curr_time timestamp withouttime zone the time stamp of the last statuscollection for this nodesl_usage_time timestamp withouttime zone the time stamp of the last time the usagewas updatedsl_node text the name of the share tree nodesl_user text the name of the user if this is a user nodesl_project text the name of the project if this is a projectnodesl_shares integer the number of shares assigned to thenodesl_job_count integer the number of active jobs associated tothis nodesl_level double precision the share percentage of this nodeamongst its siblingssl_total double precision the overall share percentage of this nodeamongst all nodessl_long_target_sharedouble precision the long term target share that we aretrying to achievesl_short_target_sharedouble precision the short term target share that we aretrying to achieve in order to meet thelong term targetsl_actual_share double precision the actual share that the node isreceiving based on usagesl_usage double precision the combined and decayed usage for thisnodesl_cpu double precision the accumulated and decayed CPU timefor this node

Grid Engine Administrator’s Guide v 8.7.0 44

1 Navigating and Understanding

Attribute Type Description
sl_mem double precision the accumulated and decayed memoryusage for this node. This represents theamount of virtual memory used byprocesses multiplied by the user andsystem CPU time. The value is expressedin gigabyte seconds.sl_io double precision the accumulated and decayed I/O usagefor this nodesl_ltcpu double precision the total accumulated CPU time for thisnodesl_ltmem double precision the total accumulated memory usage (ingigabyte seconds) for this nodesl_ltio double precision the total accumulated I/O usage for thisnode

Index:
“sge_share_log_pkey” PRIMARY KEY, btree (sl_id)
Statistics

sge_statistic

Table 49: Information Available from sge_statistic

Attribute Type
s_id numeric(38,0) not nulls_name text

Index:
"sge_statistic_pkey" PRIMARY KEY, btree (s_id)

Foreign Key Reference:
TABLE "sge_statistic_values" CONSTRAINT "sge_statistic_values_sv_parent_fkey"
FOREIGN KEY (sv_parent) REFERENCES sge_statistic(s_id)

sge_statistic_values

Table 50: Information Available from sge_statistic_values

Attribute Type
sv_id numeric(38,0) not nullsv_parent numeric(38,0)

Grid Engine Administrator’s Guide v 8.7.0 45

1 Navigating and Understanding

Attribute Type
sv_time_start timestamp without time zonesv_time_end timestamp without time zonesv_variable textsv_dvalue double precision

Index:
"sge_statistic_values_pkey" PRIMARY KEY, btree (sv_id)
"sge_statistic_values_idx0" btree (sv_parent, sv_variable, sv_time_end)

Foreign Key Constraints:
"sge_statistic_values_sv_parent_fkey" FOREIGN KEY (sv_parent)
REFERENCES sge_statistic(s_id)

dbwriter Internal Data

sge_checkpoint

Table 51: Information Available from sge_checkpoint

Attribute Type
ch_id integer not nullch_line integerch_time timestamp without time zone

Index:
"sge_checkpoint_pkey" PRIMARY KEY, btree (ch_id)

sge_version

Table 52: Information Available from sge_version

Attribute Type
v_id integer not nullv_version text not nullv_time timestamp without time zone

Index:
"sge_version_pkey" PRIMARY KEY, btree (v_id, v_version)

Grid Engine Administrator’s Guide v 8.7.0 46

1 Navigating and Understanding

#Common Tasks

1.6 Common Administrative Tasks in a Altair Grid Engine System

The following sections describe tasks commonly performed in a Altair Grid Engine system,including stopping a cluster, starting nodes, adding hosts, generating certificates, and back-ing up and restoring a cluster.
1.6.1 Draining Then Stopping the Cluster

There are different reasons to drain a cluster or parts of a cluster during the daily work withAltair Grid Engine. Old hosts that are removed from a cluster completely, service downtimeof execution nodes or different software upgrades sometimes require that there are norunning jobs on corresponding hosts. Also major Altair Grid Engine updates might requirethat there are no pending jobs in the cluster or that certain types of jobs using specificfeatures are not running.
The easiest way to get rid of those jobs would be to delete them, but the consequence ofthat approach is that the compute resources that were used by running jobs in the pastwould be lost. The alternative is to leave the jobs running until they end on their own.The following examples describe scenarios that could help in finding the best solution fordraining a cluster or parts of a cluster.
Host Replacement

• No new jobs should be started on the host that is being replaced. To make the sched-uler aware of this, disable the corresponding queues.
qmod -d "*@<hostname>"

• Jobs that are already running on that host can continue. The state of those jobs canbe observed with qstat.
qstat -s rs -l h=so02

• Once there are no more running jobs, the execution daemon can be shut down.
qconf -ke <hostname>

• The host itself can now be shut down.
Minor Altair Grid Engine Upgrade Stipulating Certain Job Types Not Run During the
Upgrade

• Create or enhance a server JSV script to detect and reject the job types that are notallowed in the system, and make this script active.
Grid Engine Administrator’s Guide v 8.7.0 47

1 Navigating and Understanding

qconf -mconf
...
jsv_url <jsv_path>
...

• qstat, qstat -j in combination with some knowledge of the users’ jobs will help findrunning instances of jobs that were submitted in the past.• Once all running jobs have finished, perform the upgrade.
1.6.2 Starting Up and Activating Nodes Selectively

One way to upgrade an Altair Grid Engine system is to use the backup/restore functionalityto set up a second, identical cluster. This is described in the section Installation Guide ->Updating with Two Separate Clusters on the Same Resource Pool (Clone Configuration) inthe Installation Guide. If this upgrade is done and the functionality of the old cluster is notdisabled, two identical clusters will exist: the initial one can still be used, and the secondone can be tested before it is made active. Compute resources can be disabled in the initialcluster selectively and enabled in the new cluster.
Disable all queues in the new cluster.

qmod -d "*"

Deactivate old daemons, and activate compute resources in the new cluster.

• Disable a subset of resources in the old cluster.
qmod -d "*@<hostname>"
...

• Wait until jobs that are still running have finished.
qstat -s rs -l h=<hostname>

• Shut down the execution daemon in the old cluster.
qconf -ke <hostname>

• Enable the host in the new cluster.
qconf -e "*@<hostname>"

• Make users aware that they can submit jobs into the new cluster. Continue with the
previous step as long as there are enabled compute resources in the old cluster.
Now the old cluster can be uninstalled.

Grid Engine Administrator’s Guide v 8.7.0 48

1 Navigating and Understanding

1.6.3 Adding New Execution Hosts to an Existing Altair Grid Engine System

There are three cases in which a new execution host can be added to the Altair Grid Engine:
1. The current system is not Windows-enabled and not running in CSP mode, and thehost to be added is not running Windows as operating system.

In this case simply follow the instructions in section Installation Guide ->Execution Hostinstallation - Execution Host Installation of the Installation Guide.
2. The current system is CSP enabled and the host to be added is not running Windowsas its operating system.

In this case certificate files need to be transferred before the system can be installed.First execute the steps described in installation step Transfer Certificate Files and Pri-
vate Keys (Manually) in section Installation Guide -> Interactive Installation - InteractiveInstallation of the Installation Guide, and then do the regular execution host instal-lation described in Installation Guide -> Execution Host installation - Execution HostInstallation.

3. The current system is not Windows-enabled and not running in CSP mode, and thegoal is to add a Windows host.
Next the system has to beWindows-enabled before it is possible to successfully installand use the additional Windows host. Find further instructions below.
To Windows-enable an Altair Grid Engine system after the qmaster installation hasalready been done, execute the following steps:

• Enable the security framework.
$SGE_ROOT/util/sgeCA/sge_ca -init

* Make the new windows host an admin host.

qconf -ah <new_windows_hosts>

* Follow the steps of _Transfer Certificate Files and Private Keys (Manually)_ in section [Installation Guide -> Interactive Installation - Interactive Installation](Installation Guide -> Interactive Installation - Interactive Installationr) of the Installation Guide.

* Then do a regular execution host installation on the new Windows host as described in Installation Guide -> Execution Host installation - Execution Host Installation.

1.6.4 Generate/Renew Certificates and Private Keys for Users

The following steps represent an easy way to create the required certificates and privatekeys for those users that want to access a CSP secured Altair Grid Engine system:
Create a text with user entries.
Create a text file containing one line for each user that should get access to the system.Each line has three entries separated by a colon character (:) – UNIX username, full name,email address.
Grid Engine Administrator’s Guide v 8.7.0 49

1 Navigating and Understanding

peter:Peter Yarrow:peter@example.com
paul:Paul Stookey:paul@example.com
mary:Mary Travers:mary@example.com

Generate the files.
Execute the following command, and specify the created text file as a parameter:
$SGE_ROOT/util/sgeCA/sge_ca -usercert <text_file>

Check the results.
Now the default location for user certificates will contain additional entries.
ls -l /var/sgeCA/port${SGE_QMASTER_PORT}/${SGE_CELL}/userkeys
...
dr-x------ 2 peter staff 512 Mar 5 14:00 peter
dr-x------ 2 paul staff 512 Mar 5 14:00 paul
dr-x------ 2 mary staff 512 Mar 5 14:00 mary
...

Install the files.
Security-related files may be installed in the $HOME/.sge directory of each user. Each userhas to execute the following commands:
. $SGE_ROOT/$SGE_CELL/common/settings.sh
$SGE_ROOT/util/sgeCA/sge_ca \

-calocaltop /var/sgeCA/port${SGE_QMASTER_PORT}/${SGE_CELL} \
-copy

Certificate and private key for user
<username> have been installed

As a fallback the key material in /var/sgeCA/port${SGE_QMASTER_PORT}/${SGE_CELL}is used if no $HOME/.sge exists. If the whole /var/sgeCA tree has been copied to allhosts the copying step to $HOME/.sge above can be omitted. But be aware to keep
/var/sgeCA/port${SGE_QMASTER_PORT}/${SGE_CELL} tree in sync on all involved hosts afterrenewal or replacement of credentials. If the copy step above has been done notify yourusers to repeat it. System and daemon certificates have to be always locally installed underthe /var/sgeCA tree on all involved hosts. They are not copied to $HOME/.sge.
Renew existing certificates:
Change the number of days that certificates should be valid.
Modify the file $SGE_ROOT/util/sgeCA/renew_all_certs.csh to do so.
extend the validity of the CA certificate by
set CADAYS = 365
extend the validity of the daemon certificate by
set DAEMONDAYS = 365
extend the validity of the user certificate by
set USERDAYS = 365

Grid Engine Administrator’s Guide v 8.7.0 50

1 Navigating and Understanding

Renew the certificates.

util/sgeCA/renew_all_certs.csh

Replace old certificates.
The files in the directory /var/sgeCA/... need to be replaced with the renewed versionor the whole /var/sgeCA/port${SGE_QMASTER_PORT}/${SGE_CELL}. See the execution hostinstallation description for more details.
User certificates must also be replaced by each user as described in Install the files. sectionabove.
The following examples provide common tasks to display or check certificates:
To display a certificate:
$SGE_ROOT/utilbin/${SGE_ARCH}/opensslx509 -in

~/.sge/port${SGE_QMASTER_PORT}/${SGE_CELL}/certs/cert.pem -text

To check the issuer:
$SGE_ROOT/utilbin/${SGE_ARCH}/opensslx509 -issuer -in

~/.sge/port${SGE_QMASTER_PORT}/${SGE_CELL}/certs/cert.pem -noout

To show validity:
$SGE_ROOT/utilbin/${SGE_ARCH}/opensslx509 -dates -in

~/.sge/port${SGE_QMASTER_PORT}/${SGE_CELL}/certs/cert.pem -noout

To show the fingerprint:
$SGE_ROOT/utilbin/${SGE_ARCH}/opensslx509 -fingerprint -in

~/.sge/port${SGE_QMASTER_PORT}/${SGE_CELL}/certs/cert.pem -noout

1.6.5 Backup and Restore the Configuration

During the backup process, all information concerning the configuration of a cluster isstored in a tar file which can be used later for restoring. The backup saves configurationobjects such as queues, parallel environments, and global/local cluster configuration. Italso saves important files located under $SGE_ROOT, but it does not save information aboutpending or running jobs. Therefore the jobs will not be restored during the restorationprocess.
Creating a Manual Backup
To perform a backup manually, do the following steps.
Prepare the backup.
Log in to an admin host as user root or as admin user. Source the settings file.
Grid Engine Administrator’s Guide v 8.7.0 51

1 Navigating and Understanding

source $SGE_ROOT/$SGE_CELL/common/settings.csh

Start the backup process.
cd $SGE_ROOT
./inst_sge -bup

Answer questions about the cluster.
Enter the installation location.
SGE Configuration Backup

This feature does a backup of all configuration you made
within your cluster.
Please enter your SGE_ROOT directory.

Enter the cell name.
Please enter your SGE_CELL name.

Enter the backup destination directory.
Where do you want to save the backup files?

Should backup be compressed?
If you are using different tar versions (gnu tar/ solaris tar), this option
can make some trouble. In some cases the tar packages may be corrupt.
Using the same tar binary for packing and unpacking works without problems!

Shall the backup function create a compressed tar-package with your files? (y/n)

Enter the backup file name.
Please enter a filename for your backup file.

configuration
sched_configuration
accounting
bootstrap
qtask
settings.sh
act_qmaster
sgemaster
settings.csh
... backup completed
All information is saved in

Grid Engine Administrator’s Guide v 8.7.0 52

1 Navigating and Understanding

Verify. Verify that the backup file was created.
Automating the Backup Process

The backup process can be automated. To do this, a backup template can be created. The
-auto command-line parameter causes the backup script to read all backup parametersfrom the template file instead of asking them interactively.
An example of a backup template canbe foundhere: $SGE_ROOT/util/install_modules/backup_template.conf:
##
Autobackup Configuration File Template
##

Please, enter your SGE_ROOT here (mandatory)
SGE_ROOT=""

Please, enter your SGE_CELL here (mandatory)
SGE_CELL=""

Please, enter your Backup Directory here
After backup you will find your backup files here (mandatory)
The autobackup will add a time /date combination to this dirname
to prevent an overwriting!
BACKUP_DIR=""

Please, enter true to get a tar/gz package
and false to copy the files only (mandatory)
TAR="true"

Please, enter the backup file name here. (mandatory)
BACKUP_FILE="backup.tar"

The automated backup process can be started with the following command:
inst_sge -bup -auto <backup_template>

There is no need to shut down the cluster during this operation.
Restoring from a Backup

The following steps are necessary to restore from a previous backup:
Prepare to restore.

Log in to an admin host as user root or as admin user. Source the settings file.
source $SGE_ROOT/$SGE_CELL/common/settings.csh

Start the backup process.

Grid Engine Administrator’s Guide v 8.7.0 53

1 Navigating and Understanding

cd $SGE_ROOT
./inst_sge -rst
SGE Configuration Restore

This feature restores the configuration from a backup you made
previously.

Answer questions about the cluster.

Enter the installation directory.
Please enter your SGE_ROOT directory.

Specify the cell name.
Please enter your SGE_CELL name.

Was compression enabled during the backup process?
Is your backup file in tar.gz[Z] format?

Specify the location of the backup file.
Please enter the full path and name of your backup file

configuration
sched_configuration
accounting
bootstrap
qtask
settings.sh
act_qmaster
sgemaster
settings.csh
sgeexecd
shadow_masters
cluster_name
jobseqnum
advance_reservations/
admin_hosts/
...
local_conf/
local_conf/su10.local

Shut down qmaster, if it is running.

Grid Engine Administrator’s Guide v 8.7.0 54

1 Navigating and Understanding

Found a running qmaster on your masterhost: <qmaster_hostname>
Please, check this and make sure that the daemon is down during the restore!

Shut down qmaster and hit <ENTER> to continue, or <CTRL-C> to stop
the restore procedure!

To shut down the master, open a new terminal window and trigger the shutdown beforecontinuing with the restore.
qconf -km

Verify
Verify the detected spooling method.
Spooling Method: classic detected!

Your configuration has been restored

Restart qmaster as user root.
Verify the Altair Grid Engine configuration.
1.6.6 Changing the Altair Grid Engine admin password for all Starter Services on all

execution hosts

Typically, company security policies require changing thepasswords of all users regularly, aswell as the password of the Altair Grid Engine admin user. This password is registered locallyon each execution host for the “Altair Grid Engine Starter Service” that starts the executiondaemon at host boot time. If the password of this user is changed on the Active Domainserver, the locally registered password also must be changed for each “Altair Grid EngineStarter Service” in order to allow it to work properly. To avoid having to log on to each singleexecution host and change the password manually there, the following command allowsdoing this remotely from a single Windows host:
sc.exe \\exechost config "UGE_Starter_Service.exe" password= the_new_password

Where:
• “\\exechost” is the name of the Altair Grid Engine execution host, the name must beprepended by two backslashes.• “the_new_password” is the new password of the Altair Grid Engine admin user - theblank between “password=” and the new password is important.

This command has to be started by a user that has sufficient permissions to execute thechange - usually, this is a member of the “Domain Admins” group.
To change the password on all execution hosts, a file with the names of all execution hosts,each prepended by two backslashes and one name per line, must be prepared, e.g. file“exechosts.txt”:
Grid Engine Administrator’s Guide v 8.7.0 55

1 Navigating and Understanding

\\hostA
\\hostB
\\hostC

Then this batch script can be used to apply the password change to all execution hosts:
@echo off
for /F %%i in (exechosts.txt) do (

sc %%i config "UGE_Starter_Service.exe" password= the_new_password
)

1.7 Managing User Access

In a system where CSP mode is enabled, by default only users who have the necessarycertificates and private keys have the right to submit and execute jobs in the Altair GridEngine system.
Restrictions can be set up by an existing Altair Grid Engine administrator. Access restrictionscan be set up in different Altair Grid Engine configuration objects to limit the access to thecluster, certain hosts/queues, or certain job types or commands.
To increase the permissions for a user, it can be possible to make this user the owner ofqueues, or make that user an operator or an administrator. After the installation of anAltair Grid Engine system, the only administrator in a cluster is the admin user. Details areexplained in the sections below.
1.7.1 Setting Up a Altair Grid Engine User

To set up a user account for a Altair Grid Engine user that should be able to submit andexecute jobs in a cluster, address the following requirements:
• The user needs a UNIX or Windows user account.
• The username has to be the same on all hosts that will be accessed by the user. ForWindows hosts, this means the short username has to be the same as on the UNIXhosts and on each host the default AD domain has to be set properly, so the usernamewithout AD domain prefix resolves to the right user.
• It is also recommended that the user ID and primary group ID be the same on all UNIXhosts. The ids of UNIX and Windows hosts differ, of course.
• The user ID has to be greater than or equal to the min_uid and the primary group IDhas to be greater than or equal to themin_gid so that the user has the ability to submitand execute jobs in a cluster. Both parameters are defined in the global configurationand have a value of 0 by default to allow root to run jobs, too. This does not apply forWindows hosts.
• In a CSP enabled system, it is also necessary to take the steps described in sectionGenerate/Renew Certificates and Private Keys for Users so that each user has accessto a certificate and private keyfile to be able to use commands to submit jobs. In CSPenabled systems, it is not possible to use Windows execution, submit or admin hosts.

Grid Engine Administrator’s Guide v 8.7.0 56

1 Navigating and Understanding

• Users need to be able to read the files in $SGE_ROOT/$SGE_CELL/common, and it is rec-ommended to have full access to the directory referenced by $TMPDIR. On Windowshosts, instead of the $TMPDIR, the fixed directory “C:\tmp” is used.
To access certain Altair Grid Engine functionalities, additional steps are required:

• Advance Reservations
Users are not allowed to create advance reservations by default. This feature has to beenabled by an administrator by adding the username to the arusers access list.

• Deadline Jobs
To submit deadline jobs, users need to be able to specify the deadline initiation time. Thisis only allowed if an administrator adds the user name to the deadlineusers access list.

• Access Lists
If access is additionally restricted in the cluster configuration, host configuration, queues,projects or parallel environments through the definition of access list, users need to beadded also to those access lists before access to corresponding parts of the cluster will begranted. For example, to be able to add a user to the share tree it is necessary to definethat user in the Altair Grid Engine system. If projects are used for the share tree definition,that user should be given access to one project, otherwise the jobs of the user might beexecuted in the lowest possible priority class, which might not be intended.
1.7.2 Managers

Users that are managers have full access to an Altair Grid Engine cluster. All requirementsthat need to be fulfilled for regular users also apply to managers.
The admin user that is defined during the installation process of the Altair Grid Engine soft-ware is automatically a manager. This user class can execute administrative commands onadministration hosts. Administrative commands are all the commands that change config-uration parameters in a cluster or that change the state of configuration objects.
In contrast to other managers, the default admin user will also have file access to centralconfiguration files.
Commands to Manage Managers
Managers can be added, modified or listed with the following commands:

• qconf -sm
Displays the list of all users with administrative rights.

• qconf -am <username>
Makes the specified user a manager.

• qconf -dm <username>
Deletes the specified user from the list of managers.

Grid Engine Administrator’s Guide v 8.7.0 57

1 Navigating and Understanding

1.7.3 Operators and Owners

Users that are defined as operators have the right to change the state of configurationobjects but they are not allowed to change the configuration of an Altair Grid Engine cluster.For example, operators can enable or disable a queue, but not to change a configurationattribute like slots of a queue instance.
The same permissions and restrictions apply to queue owners, except the state changesthey request will only be successful on those queues they own. Sometimes it makes senseto make users the owners of the queue instances that are located on the workstation theyregularly work on. Then they can influence the additional workload that is executed on themachine, but they cannot administer the queues or influence queues on other hosts. Incombination with the qidle command, it is for example possible to configure a workstationin a way so that the Altair Grid Engine workload will only be done when the owner of themachine is currently not working.
Commands to Manage Operators

Operators can be added, modified or listed with the following commands:
• qconf -so
Displays the list of all users with operator rights.

• qconf -ao <username>
Makes the specified user an operator.

• qconf -do <username>
Deletes the specified user from the list of operators.

Commands to Manage Queue Owners

The owner list of a queue is specified by the queue field owner_list. The field specifies acomma-separated list of login names of those users who are authorized. If it has the value
NONE, only operators and administrators can trigger state changes of the correspondingqueue.
To modify or look up the field value, use the following commands:

• qconf -sq <queue_name>
Prints all queue fields to stdout of the terminal where the command is executed.

• qconf -mq <queue_name>
Opens an editor so that queue fields can be modified.

1.7.4 Permissions of Managers, Operators, Job or Queue Owners

System Operations Or Configuration Changes

Grid Engine Administrator’s Guide v 8.7.0 58

1 Navigating and Understanding

Table 53: Permissions of Managers, Operators, Job or QueueOwners

Operation JobOwner QueueOwner Operator Manager
Can add/change/delete AGEconfiguration settings of allconfiguration objects (e.g.hosts, queues, parallelenvironments, checkpointingobjects . . .)

- - - X

Can clear user and projectusage in share tree. (see qconf
-clearusage).

- - - X

Can use the forced flag totrigger job state changes (see
qconf -f)

- - - X

Kill qmaster event clients (see
qconf -kec) - - - X
Kill/Start qmaster threads (see
qconf -kt | -at) - - - X
Trigger scheduler monitoring(see qconf -tsm) - - - X
Add/delete users from ACLs(see qconf -au | Au | -du) - - X X

Queue Operations

Table 54: Permissions of Managers, Operators, Job or QueueOwners

Operation Job Owner QueueOwner Operator Manager
Clear error state of queueinstance (see qconf -c) - Xˆ1 X X
Enable/Disable any queueinstance (see qconf -d | -e) - Xˆ1 X X
Suspend/unsuspend anyqueue instance (see qconf -s
| -us).

- Xˆ1 X X

Job Operations

Grid Engine Administrator’s Guide v 8.7.0 59

1 Navigating and Understanding

Table 55: Permissions of Managers, Operators, Job or QueueOwners

Operation Job Owner QueueOwner Operator Manager
Change the AR request of jobssubmitted by other users (see
qalter -ac)

- - X X

Change override tickets ofother jobs (see qalter -o). - - X X
Change functional shares ofother jobs (see qalter -js). - - X X
Change attributes of jobs thatwere submitted by other users. - - X X
Increase priority of jobs ownedby other users (see qalter -p). - - X X
Reschedule jobs of other users(see qmod -rj | -rq). - Xˆ2 X X
Suspend/unsuspend any job - Xˆ2 X XClear error state of other jobs(see qmod -c). - - X X
Delete job of other users (see
qdel). - - X X
Set/unset system hold state ofa job (see qalter -h s|S). - - - X
Set/unset operator hold stateof a job (see qalter -h o|O). - - X X
Set/unset user hold state of ajob (see qalter -h u|U). X - X X

1 These operations can only be applied to queues where the user is the owner.
2 Queue owners cannot trigger state changes of jobs directly, but the state changes are ap-plied to running jobs when the owner of a particular queue where jobs are running triggersa state change for that queue.
1.7.5 User Access Lists and Departments

User access lists are lists of user names that can be attached to configuration parametersof the following objects.
• Cluster Configuration
• Host
• Queue
• Projects

Grid Engine Administrator’s Guide v 8.7.0 60

1 Navigating and Understanding

• Parallel Environment
The configuration parameters with the name user_lists and acl define access lists of userswho will get access to the corresponding object, whereas the attributes with the name
xuser_lists and xacl will define the access lists for those users who will not get access. A userthat is referenced in both user_lists and xuser_lists or in both acl and xacl will not get access,whereas when both lists are set to NONE anyone can access the corresponding object.
The term access has different meanings for the different objects. Denied access in the clus-ter configuration means the user cannot use the whole cluster, whereas denied access toparallel environments will cause the Altair Grid Engine scheduler to skip scheduling of cor-responding jobs when a user explicitly requests that parallel environment.
Note that access lists are also used as department in Altair Grid Engine. In contrast to accesslists, users can be part of only of one department. Departments are used in combinationwith the function and override policy schemes.
The type field of an access list object defines whether the corresponding object can be usedas department or only as access list.
Commands to Add, Modify Delete Access Lists

Access lists can be added, modified or listed with the following commands:
• qconf -sul
Displays the names of all existing access lists.

• qconf -suld [access_lists]
Shows a detailed list of all access list objects of an Altair Grid Engine cluster or objectsin .

• qconf -dul <listname>
Deletes the access list with the given name.

• qconf -au <user> <user> ... <listname>
Adds the specified users to the access list.

• qconf -du <user> <user> ... <listname>
Deletes the specified user from the access list.

• qconf -Du <filename|dirname>
Deletes an access list object from file or from every file in a given directory.

• qconf -am <listname>
Opens an editor to modify the access list parameters.

• qconf -Au <filename|dirname>
Similar to -au with the difference that configuration is read from a file. If a directoryis specified, access list objects for every configuration file in the directory are added.

Grid Engine Administrator’s Guide v 8.7.0 61

1 Navigating and Understanding

• qconf -Mu <filename|dirname>
Similar to -mu with the difference that configuration is read from a file. If a directory isspecified, access list objects for every configuration file in the directory are modified.

Configuration Parameters of Access Lists

Each access list object supports the following set of configuration attributes:
Table 56: Access List Configuration Attributes

Attribute Description
name The name of the access list.
type The type of the access list, currently one of ACL, or DEPT, or acombination of both in a comma-separated list. Depending on thisparameter, the access list can be used as access list only or as adepartment.
oticket The number of override tickets currently assigned to the department.
fshare The current functional shares of the department.
entries The entries parameter contains the comma -separated list of usernames or primary group names assigned to the access list or thedepartment. Only a user’s primary group is used; secondary groupsare ignored. Only symbolic names are allowed. A group isdifferentiated from a user name by prefixing the group name with an‘@’ sign. When using departments, each user or group enlisted mayonly be enlisted in one department, in order to ensure a uniqueassignment of jobs to departments. For jobs without users who matchany of the users or groups enlisted under entries, the

defaultdepartment is assigned, if existing.

1.7.6 Projects

Project objects are used in combinationwith the Altair Grid Engine policy scheme to expressthe importance of a group of jobs submitted as part of that project compared to otherjobs in other projects. Details for the setup of the policy scheme can be found in sectionManaging Priorities and Usage Entitlements of the Administration Guide. The followingsections describe the available commands and object attributes.
Commands to Add, Modify or Delete Projects

Access lists can be added, modified or listed with the following commands:
• qconf -aprj
Adds a new project.

• qconf -Aprj <filename|dirname>
Adds a new project that is defined in a file. If a directory is given, projects for everyconfiguration file in the directory are added.

Grid Engine Administrator’s Guide v 8.7.0 62

1 Navigating and Understanding

• qconf -dprj <project_name>
Deletes an existing project.

• qconf -Dprj <filename|dirname>
Deletes a project from a file or from every file in the specified directory.

• qconf -mprj <project_name>
Opens an editor so that the specified project can be modified.

• qconf -Mprj <filename|dirname>
Modifies the project. New object configuration is read from a file. If a directory isgiven, projects for every configuration file in the directory are modified.

• qconf -sprj
Shows the current configuration of the project.

• qconf -sprjl
Shows all existing projects of an Altair Grid Engine cluster.

• qconf -sprjld [<prj_list>]
Shows a detailed list of all projects of an Altair Grid Engine cluster or projects in
<prj_list>.

Configuration Parameters of Projects

Each project object supports the following set of configuration attributes:
Table 57: Project Configuration Attributes

Attribute Description
name The name of the project.
oticket The number of override tickets currently assigned to the project.
fshare acl The current functional share of the project. A list of user access listsreferring to those users being allowed to submit jobs to the project. Ifset to NONE all users are allowed to submit to the project except forthose listed in xacl.
xacl A list of user access lists referring to those users that are not allowedto submit jobs to the project.

1.8 Understanding and Modifying the Cluster Configuration

The host configuration attributes control the way an Altair Grid Engine cluster operates.These attributes are set either globally through the global host configuration object, or in alocal host configuration object that overrides global settings for specific hosts.

Grid Engine Administrator’s Guide v 8.7.0 63

1 Navigating and Understanding

1.8.1 Commands to Add, Modify, Delete or List Global and Local Configurations

Global and local configurations can be added, modified, deleted or listed with the followingcommands:
• qconf -Aconf <filename|dirname>
Adds a new local configuration that is defined in a file. If a directory is specified, con-figurations for every configuration file in the directory are added.

• qconf -Mconf <filename|dirname>
Modifies a local configuration that is defined in a file. If a directory is specified, config-urations for every configuration file in the directory are modified.

• qconf -aconf <host>
Adds a new local configuration for the given host.

• qconf -dconf <host>
Deletes an existing local configuration.

• qconf -Dconf <filename|dirname>
Deletes a configuration from a file or from every file in the specified directory.

• qconf -mconf <host> | global
Modifies an existing local or global configuration.

• qconf -sconf <host> | global
Displays the global or local configuration.

• qconf -sconfl <host> | global
Displays the list of existing local configurations.

• qconf -sconfld <conf_list>
Shows a detailed list of all configurations of an Altair Grid Engine cluster or configura-tions in <conf_list>.

1.8.2 Configuration Parameters for Global and Local Configurations

The global object and each local configuration object support the following set of configura-tion attributes. Note that the list is not complete. Find the full description in the man page
sge_conf(1).

Grid Engine Administrator’s Guide v 8.7.0 64

1 Navigating and Understanding

Table 58: Project Configuration Attributes
Attribute Description
execd_spool_dir The execution daemon spool directory. For Windowsexecution hosts, this always has to be the value“/execd_spool_dir/win-x86/placeholder” which isreplaced on the Windows execution host by thecorresponding path that is defined in the$SGE_ROOT/$SGE_CELL/common/path_map file.
mailer Absolute path to the mail delivery agent.
load_sensor A comma-separated list of executables to be started byexecution hosts to retrieve site configurable loadinformation.
prolog epilog Absolute path to executables that will be executedbefore/after an Altair Grid Engine job.
shell_start_mode Defines the mechanisms which are used to invoke thejob scripts on execution hosts.
min_uid min_gid Defines the lower bound on user/group IDs that mayuse the cluster.
user_lists xuser_lists User access lists that define who is allowed access to thecluster.
administrator_mail List of mail addresses that will be used to send problemreports.
project xproject Defines which projects are granted access and whereaccess will be denied.
load_report_time The system load of execution hosts is periodicallyreported to the master host. This parameter defines thetime interval between load reports.
reschedule_unknown Determines whether jobs on execution hosts in anunknown state are rescheduled and thus sent to otherhosts.
max_unheard If the master host could not be contacted or was notcontacted by the execution daemon of a host for

max_unheard seconds, all queues residing on thatparticular host are set to status unknown.
loglevel Defines the detail level for log messages.
max_aj_instances This parameter defines the maximum number of arraytasks to be scheduled to run simultaneously per arrayjob.
max_aj_tasks Defines the maximum number of tasks allowed for arrayjobs. If this limit is exceeded, the job will be rejectedduring submission.
max_u_jobs The number of active jobs each user can have in thesystem simultaneously.
max_jobs The number of active jobs in the system.
max_advance_reservations The maximum number of active advance reservationsallowed in Altair Grid Engine.
enforce_project When set to true, users are required to request a projectduring submission of a job.

Grid Engine Administrator’s Guide v 8.7.0 65

1 Navigating and Understanding

Attribute Description
enforce_user When set to true, users must exist within the Altair GridEngine system before they can submit jobs. auto meansthat the user will be automatically created during thesubmission of the job.
auto_user_delete_time
auto_user_default_project
auto_user_fshare
auto_user_oticket

Defines different aspects for automatically createdusers.

gid_range comma-separated list of range expressions specifyingadditional group IDs that can be used by executiondaemons to tag jobs.

1.9 Understanding and Modifying the Altair Grid Engine Scheduler
Configuration

The Altair Grid Engine scheduler determines which jobs are dispatched to which resources.It runs periodically at predefined intervals, but can also be configured so that additionalscheduling runs are triggered by job submission and job finishing events.
Crucial steps within a scheduler run are as follows:

• Create the job order list out of the pending job list.
• Create a queue instance order list based on a host sort formula or a sequence num-bering schema (or both).
• Dispatch the jobs (based on the job-order list) to the resources (based on the queue-instance order list).

The scheduler configuration is a crucial part of each installation due to its influence on theoverall cluster utilization, job throughput, and master host load. Altair Grid Engine offers alarge set of variables, making the configuration very flexible.
Because this scheduler configuration section intersects with several other topics (such asthe policy configuration), it is recommended to read all of the following sections and manpages: man sched_conf, man sge_priority and in Managing Priorities and Usage Entitle-ments.
1.9.1 The Default Scheduling Scheme

The scheduler configuration is printedwith the qconf -ssconf command. Modify the sched-uler configuration with the editor configured in the $EDITOR environment variable with the
qconf -msconf command. The default configuration after a installation is shown below:
> qconf -ssconf
algorithm default

Grid Engine Administrator’s Guide v 8.7.0 66

1 Navigating and Understanding

schedule_interval 0:0:10
maxujobs 0
job_load_adjustments np_load_avg=0.15
load_adjustment_decay_time 0:7:30
host_sort_formula np_load_avg
schedd_job_info false
flush_submit_sec 0
flush_finish_sec 0
params none
reprioritize_interval 00:00:40
halftime 168
usage_weight_list wallclock=0.000000,cpu=1.000000,mem=0.000000,io=0.000000
compensation_factor 5.000000
weight_user 0.250000
weight_project 0.250000
weight_department 0.250000
weight_job 0.250000
weight_tickets_functional 0
weight_tickets_share 0
share_override_tickets TRUE
share_functional_shares TRUE
max_functional_jobs_to_schedule 200
report_pjob_tickets TRUE
max_pending_tasks_per_job 50
halflife_decay_list none
policy_hierarchy OFS
weight_ticket 0.010000
weight_waiting_time 0.000000
weight_deadline 3600000.000000
weight_urgency 0.100000
weight_priority 1.000000
max_reservation 0
default_duration INFINITY
weight_host_affinity 0.000000
weight_host_sort 1.000000
weight_queue_affinity 0.000000
weight_queue_host_sort 1.000000
weight_queue_seqno 0.000000

The scheduler parameters are explained in the table below:
Table 59: Scheduler Configuration Attributes

Attribute Value Specification
algorithm The algorithm can’t be changed; it is default.
schedule_interval Specifies the time interval at which the scheduler iscalled. The format is hours:minutes:seconds.

Grid Engine Administrator’s Guide v 8.7.0 67

1 Navigating and Understanding

Attribute Value Specification
maxujobs The maximum number of user jobs running at the sametime. Note: 0 indicates that there is no limit. Since theadvent of resource quota sets, configuring the user limitthere is preferred because of its superior flexibility.
job_load_adjustment Determines the load correction (additional artificial loadfor the scheduler), that each job contributes to themachine load values after the job is dispatched. Thisavoids overloading a currently unloaded host bydispatching too many jobs on it, because load reportingis sluggish (right after scheduling, there is no additionalload).
load_adjustment_decay_time The load adjustment is scaled linearly. This means rightafter dispatching the job, the job_load_adjustmentadjusts the load value of the resources with 100%influence. After a while the influence is reduced linearlyuntil load_adjustment_decay_time is reached.
host_sort_formula An algebraic expression used to derive a single weightedload value from all or part of the load parameters foreach host and from all or part of the consumableresources being maintained for each host. The default is

np_load_avg, the normalized average load. It is onlyconsidered if weight_host_sort is not 0.
sched_jobinfo If set to true, additional scheduling information can beseen in the qstat -j output. The default value is false,because it impacts the overall scheduler performance inbigger clusters.
flush_submit_sec If unequal to 0, it defines an additional scheduler runthat is performed the specified number of seconds aftera job is submitted.
flush_finish_sec If unequal to 0, it defines an additional scheduler runthat is performed the specified number of seconds aftera job finishes.
params Additional parameters for the Altair Grid Enginescheduler:* DURATION_OFFSET: assumed offset between run-timeof a job and the run-time from scheduler perspective* PROFILE: 1 = turning run-time profiling on* MONITOR: 1 = turning additional monitoring on* PE_RANGE_ALG: alternative behavior when selectingslots depending on a PE range
other parameters see Managing Priorities and Usage Entitlements

1.10 Configuring Properties of Hosts and Queues

Both hosts and queues offer a wide range of resources for jobs. While hosts are a commonphysical concept, queues can be seen as job containers spanning across multiple hosts. A

Grid Engine Administrator’s Guide v 8.7.0 68

1 Navigating and Understanding

specific queue on a specific host is called a queue instance, which is a central element inAltair Grid Engine. One host can be part of multiple queues. Resources can be defined on ahost level or on a queue level. This section describes the configuration of hosts and queues,as well as their intersection with complexes and load sensors.
1.10.1 Configuring Hosts

Altair Grid Engine hosts have two configurations: the local cluster configuration (alsocalled execution host local configuration) and the execution host configuration.
Local Cluster Configuration

The local cluster configuration can override values from the global cluster configuration(qconf -sconf) to adapt them to the execution hosts’ characteristics (like the path to themailer or xtermbinary). The following table lists the commandsused to alter the local clusterconfiguration:
Table 60: Local Cluster Configuration

Command Result
qconf -sconfl Shows all hosts with a local cluster configuration.
qconf -sconf <hostlist> Shows the local cluster configuration of hosts from the

<hostlist>.‘qconf -mconf ’ Opens an editor and lets the user configure the localcluster configurations of hosts in the <hostlist>.
qconf -Mconf <hostlist> Modifies the local configuration
qconf -aconf <hostlist> Adds new local cluster configurations to hosts given by ahost list.
qconf -Aconf <filelist> Adds new local cluster configurations to hosts given by afile list
qconf -dconf Deletes the local cluster configuration of the host givenby the host list.

The following attributes can be used for overriding the global cluster configuration:
• execd_spool_dir

• mailer

• xterm

• load_sensor

• prolog

• epilog

• load_report_time

• rescheduler_unknown

Grid Engine Administrator’s Guide v 8.7.0 69

1 Navigating and Understanding

• shepherd_cmd

• gid_range

• execd_params

• qlogin_daemon

• qlogin_command

• rlogin_daemon

• rlogin_command

• rsh_daemon

• rsh_command

• libjvm_path

• additional_jvm_args

More details about these attributes can be found in the man page sge_conf and in thesection Understanding and Modifying the Cluster Configuration.
Execution Host Configuration

The execution host configuration is modified with qconf -me <hostname>. Scripts shouldcall qconf -Me <filename|dirname>, which allows changes to the configuration based on agiven file or directory. The configuration can be shownwith qconf -se <hostname> or qconf
-seld. The following table illustrates the configuration host attributes.

Table 61: Execution Host Configuration
Command Result
qconf -ae [<template>] Adds a new execution host configuration,optionally based on a configuration template.
qconf -Ae <filelist|dirname> Adds an execution host configuration based on afile. If a directory is specified, execution hosts forevery configuration file in the directory are added.
qconf -de <hostlist> Deletes execution host configuration based on thegiven host list.
qconf -De <filename|dirname> Deletes an execution host from a file or from everyfile in a given directory.
qconf -me <hostname> Modifies the execution host configuration of thehost given by the hostname.
qconf -Me <filename|dirname> Modifies an execution host given based on aconfiguration file. If a directory is specified,execution hosts for every configuration file in thedirectory are modified.
qconf -se <hostname> Shows the execution host configuration of thegiven host.

Grid Engine Administrator’s Guide v 8.7.0 70

1 Navigating and Understanding

Command Result
qconf -sel Shows all existing execution hosts of an Altair GridEngine cluster.
qconf -seld [<host_list>] Shows a detailed list of all execution hosts of anAltair Grid Engine cluster or hosts in <host_list>.

The following is an example of an execution host configuration:
> qconf -se ma
> csuse
hostname macsuse
load_scaling NONE
complex_values NONE
load_values arch=lx-amd64,num_proc=1,mem_total=1960.277344M, \

swap_total=2053.996094M,virtual_total=4014.273438M, \
load_avg=0.280000,load_short=0.560000, \
load_medium=0.280000,load_long=0.320000, \
mem_free=1440.257812M,swap_free=2053.996094M, \
virtual_free=3494.253906M,mem_used=520.019531M, \
swap_used=0.000000M,virtual_used=520.019531M, \
cpu=2.900000,m_topology=SC,m_topology_inuse=SC, \
m_socket=1,m_core=1,m_thread=1,np_load_avg=0.280000, \
np_load_short=0.560000,np_load_medium=0.280000, \
np_load_long=0.320000

processors 1
user_lists NONE
xuser_lists NONE
projects NONE
xprojects NONE
usage_scaling NONE
report_variables NONE

Execution Host Configuration Fields:
• The hostname field denotes the name of the host.
• With load_scaling, load values can be transformed. This can be useful when stan-dardizing load values based on specific host properties (e.g. number of CPU cores).More information and examples about load scaling are in the Special Activities Guidein section Scaling the Reported Load.
• The complex_values field is used to configure host complexes. More details about thisfield are described in the Utilizing Complexes and Load Sensors.
• The load_values and the processors field are read-only, and they can only be seenwith qconf -se <hostname>. these fields are not available when the execution hostconfiguration is modified.

Grid Engine Administrator’s Guide v 8.7.0 71

1 Navigating and Understanding

• The usage_scaling provides the same functionality as load_scaling, but with the dif-ference that it can only be applied to the usage values mem, cpu, and io. When noscaling is given, the default scaling factor (1) is applied.
• Access control can be configured on user and project level.

– user_lists and xuser_lists contain a comma-separated list of access lists (seealso man access_lists. The default value of both fields is NONE, which allows anyuser access to this host. If access lists are configured in user_lists, only userswithin this list (but not listed in xuser_lists), have access to the host.
– All users in the access lists of xuser_list have no access.
– Inclusion and exclusion of jobs based on the projects they are associated with isconfigured in the projects and xprojects field. They contain a comma-separatedlist of projects that are allowed or disallowed on the specific host. By default (bothvalues NONE), all projects are allowed. If a project is listed in both lists, access isdisallowed for all jobs of this project.

• The report_variables field contains a list of load values that are written in the report-ing file each time a load report is sent from the execution daemon to the qmasterprocess.
Administrative and Submit Hosts

Altair Grid Engine allows the administrator to control which hosts can be used to submitjobs, andwhich hosts can be used for administrative tasks, such as changing configurations.
The following table shows all commands used for configuring the administrative host list.

Table 62: Admin Host Configuration
Command Result
qconf -ah <hostnamelist> Adds one or more host to the administrative host list.
qconf -dh <hostnamelist> Deletes one or more hosts from the list of administrativehosts.
qconf -sh Shows all administrative hosts.

Submit hosts are configured in a similar way. The following table shows the commandsused for configuring the submission host list.
Table 63: Submission Host Configuration

Command Result
qconf -as <hostnamelist> Adds one or more host to the submit host list.
qconf -ds <hostnamelist> Deletes one or more hosts from the list of submit hosts.
qconf -ss Shows all submits hosts.

On Windows, additionally the dynamic link library $SGE_ROOT/lib/win-x86/pthreadVC2.dll
Grid Engine Administrator’s Guide v 8.7.0 72

1 Navigating and Understanding

has to be copied to the Windows directory (usually “C:\Windows”) on each submit or adminhost, in order to make the Altair Grid Engine binaries work on these hosts.
Grouping of Hosts

To simplify the overall cluster configuration, Altair Grid Engine hosts can be arranged withthe host-group feature. Host-groups allow the administrator and the user to identify agroup of hosts just with a single name. To differentiate host names fromhost-group names,host-group names always start with the @ prefix.
Table 64: Host Group Configuration

Command Result
qconf -ahgrp <group> Adds a new host group entry with the name

<group> and opens an editor for editing.
qconf -Ahgrp <filename|dirname> Adds a new host group entry with theconfiguration based on the file <filename>. If adirectory is specified, host groups for everyconfiguration file in the directory are added.
qconf -dhgrp <group> Deletes the host group with the name <group>.
qconf -Dhgrp <filename|dirname> Deletes a host group from a file or from everyfile in a given directory.
qconf -mhgrp <group> Modifies the host group in an interactive editorsession.
qconf -Mhgrp <filename|dirname> Modifies a host group based on a configurationfile <filename>. If a directory is specified, hostgroups for every configuration file in thedirectory are modified.
qconf -shgrp <group> Shows the configuration of the host-group

<group>.
qconf -shgrp_tree <group> Shows the host-group <group> with sub-groupsin a tree structure.
qconf -shgrp_resolved <group> Shows the host-group with an resolved host-list.
qconf -shgrpl Shows a list of all host-groups.
qconf -shgrpld [<hgrp_list>] Shows a detailed list of all host groups of anAltair Grid Engine cluster or host groups in

<hgrp_list>.

An host-group configuration consists of two entries:
• The group_name, that must be a unique name with an “@” prefix
• A hostlist, that can contain host-names and/or other host-groupnames. Having host-group names in the hostlist allows one to structure the hosts within a tree. The follow-ing example points this out.

Example: Grouping Host-Groups in a Tree Structure

In the first step, the lowest host-groups with real host-names must be added:
Grid Engine Administrator’s Guide v 8.7.0 73

1 Navigating and Understanding

> qconf -ahgrp @lowgrp1
group_name @lowgrp1
hostlist host1

> qconf -ahgrp @lowgrp2
group_name @lowgrp2
hostlist host2

> qconf -ahgrp @lowgrp3
group_name @lowgrp3
hostlist host3

> qconf -ahgrp @lowgrp4
group_name @lowgrp4
hostlist host4

Now the mid-level groups can be defined:
> qconf -ahgrp @midgrp1
group_name @midgrp1
hostlist @lowgrp1 @lowgrp2

> qconf -ahgrp @midgrp2
group_name @midgrp2
hostlist @lowgrp3 @lowgrp4

In a final step, the highest host-group is added:
> qconf -ahgrp @highgrp
group_name @highgrp
hostlist @midgrp1 @midgrp2

Show the tree:
> qconf -shgrp_tree @highgrp
@highgrp

@midgrp1
@lowgrp1

host1
@lowgrp2

host2
@midgrp2

@lowgrp3
host3

@lowgrp4
host4

The resolved host-list looks like the following:
Grid Engine Administrator’s Guide v 8.7.0 74

1 Navigating and Understanding

> qconf -shgrp_resolved @highgrp
host1 host2 host3 host4

1.10.2 Configuring Queues

Queues are job-containers that are used for grouping jobs with similar characteristics. Ad-ditionally, with queues, priority-groups can be defined with the subordination mechanism.A queue must have a unique queue name that is set with the qname attribute, and spanover a defined set of hosts (hostlist). The hostlist can contain none for no host, @allfor all hosts, or a list of hostnames and/or host group names. The following table gives anoverview over the queue configuration commands.
Table 65: Queue Configuration Commands

Command Description
qconf -aq [qname] Adds a new queue.
qconf -Aq <filename|dirname> Adds a new queue based on the configurationgiven by the file filename. If a directory is specified,queues for every configuration file in the directoryare added.
qconf -cq <queuelist> Cleans a queue of jobs. The queues are given in the

<queuelist>.
qconf -dq <queuelist> Deletes one or more queues. The name of queuesare given in the <queuelist>.
qconf -Dq <filename|dirname> Deletes a queue from a file or from every file in agiven directory.
qconf -mq <hostname> Opens an editor for modifying a queueconfiguration.
qconf -Mq <filename|dirname> Modifies a queue configuration based on aconfiguration file. If a directory is specified, queuesfor every configuration file in the directory aremodified.
qconf -sq <queuelist> Shows the queue configuration for one or morequeues. If no parameter is given, a queue templateis shown.
qconf -sql Shows a list of all configured queues.
qconf -sqld [<queue_list>] Shows a detailed list of all queues of an Altair GridEngine cluster or queues in <queue_list>.

Example: Adding a New Queue, Showing the Queue Configuration and Deleting the
Queue

> qconf -aq new.q
qname new.q
hostlist @allhosts
...
(closing the vi editor with CTRL-ZZ)

Grid Engine Administrator’s Guide v 8.7.0 75

1 Navigating and Understanding

user@host added "new.q" to cluster queue list

> qconf -sq new.q
qname new.q
hostlist @allhosts
...
h_vmem INFINITY

> qconf -dq new.q
user@host removed "new.q" from cluster queue list

Queue Configuration Attributes

The queue configuration involves a spectrum of very different settings. For more detailedinformation, see man queue_conf.
Queue Limits

The queue configuration allows one to define awide range of limits. These limits (by default,
INFINITY) limit the following parameters of a job running in this particular queue:

• runtime (h_rt/s_rt)
• CPU time (h_cpu/s_cpu)
• number of written disc blocks (h_fsize/s_fsize)
• data segment size (h_data/s_data)
• stack size (h_stack/s_stack)
• maximum core dump file size (h_core/s_core)
• resident set size (h_rss/s_rss)
• virtual memory size (h_vmem/s_vmem)

All limits are available as soft and hard limit instances (prefix s_ and h_).
The following table shows the meaning of the different limits:

Table 66: Queue Resource Limits
Attribute Description
h_rt Limits the real time (wall clock time) the job is running. If ajob runs longer than specified a SIGKILL signal is sent to thejob.
s_rt The soft real time limit (wall clock time limit) warns a jobwith a catchable SIGUSER1 signal, if exceeded. After adefined time period (see notify parameter), the job iskilled.

Grid Engine Administrator’s Guide v 8.7.0 76

1 Navigating and Understanding

Attribute Description
h_cpu Limits the CPU time of a job. If a job needs more CPU timethan specified, the job is signaled with a SIGKILL. In case ofparallel jobs, this time is multiplied by the number ofgranted slots.
s_cpu Limits the CPU time of a job. If a job needs more CPU timethan specified, the job is signaled with SIGXCPU, which canbe caught by the job. In case of parallel jobs, this time ismultiplied by the number of granted slots.
h_vmem The virtual memory limit limits the total amount ofcombined memory usage of all job processes. If the limit isexceeded a SIGKILL is sent to the job.
s_vmem The virtual memory limit limits the total amount ofcombined memory usage of all job processes. If the limit isexceeded a SIGXCPU is sent, which can be caught by thejob.
h_fsize, s_fsize,
h_data, s_data,
h_stack, s_stack,
h_core, s_core,
h_rss,s_rss‘

These limits have the syntax of the setrlimit system call ofthe underlying operating system.

Queue Sequencing and Thresholds
The seq_no field denotes the sequence number the queue (or the queue instances) haswhen the queue sortmethod of the scheduler configuration is based on sequence numbers.More information can be found in the scheduler configuration section.
With load_thresholds it is possible to define when an overloaded queue instance is set tothe alarm state. This state prevents more jobs from being scheduled in this overloadedqueue instance.
suspend_thresholds defines the thresholds at which the queue is set into a suspendedstate. The default value is NONE (no threshold). If suspend thresholds are defined, andone of the thresholds is exceeded, within the next scheduling run, a predefined number ofjobs running in the queue are suspended. The number of suspended jobs is defined in the
nsuspend field. The suspend_interval field denotes the time interval until the next nsuspendnumber of jobs are suspended, in case one of the suspend thresholds remains exceeded.
Queue Checkpoints, Processing and Type
The priority value specifies at which operating system process priority value the jobs arestarted. The possible range for priority (also called nice values) is from -20 to 20, where -20is the highest priority and 20 the lowest priority. This value only has effect when dynamicpriority values are turned off (i.e. reprioritize is false in the global cluster configuration).
The min_cpu_interval defines the time interval between two automatic checkpoints. Fur-ther information about checkpointing can be found in the man page sge_ckpt.
The processors field can be used to use a predefined processor set on the Solaris operatingsystem. It is deprecated since the advent of the core binding feature.

Grid Engine Administrator’s Guide v 8.7.0 77

1 Navigating and Understanding

Do not use the processors field when using the core binding feature on Solaris!
Warning

The qtype field specifies what type the queue has. Allowed values are BATCH, INTERACTIVE, acombination of both and NONE. Interactive queues can run jobs from interactive commands,like qrsh, qsh, qlogin, and qsub -now y. The remaining batch jobs can only run in BATCHqueues.
The list of checkpointing environments associated with this queue can be set at ckpt_list.Further information about checkpointing can be found in the man page sge_ckpt.
The pe_list contains a list of parallel environments which are associated with this queue.
If rerun is set to FALSE (the default value), the behavior of the jobs running in the queue isthat they are not restarted in case of an execution host failure (see man queue_conf formoredetails). If set to TRUE, the jobs are restarted (run again) in such a case. The specified defaultbehavior for the jobs can be overruled on job level, when the -r option is used during jobsubmission.
The slots field defines the number of job slots that can be used within each queue instance(a queue element on a host). In case only normal (sequential) jobs are running in the queue,it denotes the number of jobs each queue instance is capable to run. When the queue spansover n hosts, the whole queue is limited to n*slots-value slots.
Queue Scripting
The tmpdir field specifies the path to the host’s temporary file directory. The default value is
/tmp. When the execution daemon starts up a new job, a temporary job directory is createdin tmpdir for this particular job, and the job environment variables TMP and TMPDIR are setto this path.
The shell field points to the command interpreter, which is used for executing the jobscript. This shell is only taken into account when the shell_start_mode in the cluster con-figuration is set to either posix_compliant or script_from_stdin. This parameter can alsobe overruled by the -S parameter on job submission time.
The prolog field can be set to a path to a shell script that is executed before a job runningin this queue starts. The shell script is running with the same environment as the job. Theoutput (stdout and stderr) is redirected to the same output file as the job. Optionally theusername under which the prolog script is executed can be set with a <username>@ prefix.For Docker jobs, the prolog is first executed on the physical host, then in the container. Inthe container, the environment variable $SGE_IN_CONTAINER is set (always to the value “1”)to allow the script to distinguish where it was started. In the container, the prolog alwaysruns under the job user; the <username>@ prefix is ignored there.
The epilog field sets the path to a shell script that is executed after a job running in thisqueue ends. Also see the prolog field and the queue_conf man page.For Docker jobs, the epilog is first executed in the container, then on the physical host.Here, $SGE_IN_CONTAINER is set and the <username>@ prefix is ignored in the container,too.
The shell_start_mode determines which shell executes the job script. Possible val-ues are posix_compliant (take the shell specified in shell or on job submission time),
Grid Engine Administrator’s Guide v 8.7.0 78

1 Navigating and Understanding

unix_behavior (take the shell specified within the shell script (#!) or at job submissiontime), or script_from_stdin. More detailed information can be found in the queue_confman page.
The starter_method allows one to change the job starting facility. Instead of using the speci-fied shell, the configured executable is used for starting the job. By default, this functionalityis disabled (value NONE).
Queue Signals and Notifications

Altair Grid Engine suspends, resumes, and terminates the job process usually by defaultwith the signals SIGSTOP, SIGCONT, and SIGKILL. These signals can be overridden with thequeue configuration parameters suspend_method, resume_method, and terminate_method.Possible values are signal names (such as SIGUSR1) or a path to an executable. Theexecutable can have additional parameters. Special parameters are $host, $job_owner,
$job_id, $job_name, $queue, and $job_pid. These variables are substituted with thecorresponding job-specific values.
When a job is submitted with a -notify option, the notify field in the queue configurationdefines the time interval between the delivery of the notify signal (SIGUSR1, SIGUSR2) andthe suspend/kill signal.
Queue Access Controls and Subordination

If user names are listed in the owner_list queue configuration attribute, these users havethe additional right to disable or suspend the queue.
Access control to the queue is configured by the user_lists, xuser_lists, projects, and
xprojects lists. More detailed information about configuration of these fields can be foundin the man page access_lists and in the section ‘Configuring Hosts - Configuring Hosts’.
Queue-wise and slot-wise subordination can be defined in the subordinate_list. More in-formation about the subordination mechanism can be found in the Special Activities Guidein section Implementing Pre-emption Logic.
Queue Complexes

If a previously declared complex (see man complex) should be used as a queue complexor queue consumable (i.e. available on queue instance level), it must be initialized in the
complex_values field.
Queue consumables and queue complexes must be initialized on the queue level.The complexes_values field is used to configure the specific values of the complexes(e.g. complex_values test=2 sets the complex test to the value 2 on each queue instancedefined by the queue).
Queue Calendar and State

The calendar attribute associates a queue with a specific calendar that controls the queue.More information about calendars can be found in the man page calendar_conf.
The initial_state field specifies the state of the queue instances have after an executiondaemon (having this queue configured) starts or when the queue is added the first time.Possible values are default, enabled, and disabled.

Grid Engine Administrator’s Guide v 8.7.0 79

1 Navigating and Understanding

1.10.3 Utilizing Complexes and Load Sensors

The complexes concept in Altair Grid Engine is mainly used for managing resources. Theload sensors are used on execution hosts to provide a functionality for reporting the stateof resources in a flexible way. The following sections describe both concepts and showexamples of how they can be used for adapting Altair Grid Engine to the needs of users.
Configuring Complexes

Complexes are an abstract concept for configuring and denoting resources. They are de-clared in the complex configuration (qconf -mc). Depending on whether these complexesare initialized with a value, they can reflect either host resources or queue resources.Host-based complexes are initialized in the complex_values field of the execution host con-figuration (qconf -me <hostname>). If they are initialized in the global host configuration(qconf -me global), they are available in the complete cluster. The configuration value is alist of name/value pairs that are separated by an equals sign (=).
Adding, Modifying and Deleting Complexes

All complexes are administered in a single table. The following commands are used inorder to show and modify complexes.
Table 67: Complex Configuration Commands

Command Description
qconf -sc Shows a list of all configured complex entries (the complextable).
qconf -mc Opens the editor configured in the $EDITOR environmentvariable with all configured complex entries. This complextable can be modified with the editor. When the editor isclosed the complex configuration is read in.
qconf -Mc <filename> Reads the given file in as a new complex configuration.

Each row of the complex table consists of the following elements:
Table 68: Complex Configuration Attributes

Attribute Description
name The unique name of the complex.
shortcut This shortcut can be used instead of the name of complex(e.g. when requesting the complex). It must be unique inthe complex configuration.

Grid Engine Administrator’s Guide v 8.7.0 80

1 Navigating and Understanding

Attribute Description
type The type of the complex variable (used for internalcompare functions and load scaling). Possible values are

INT, DOUBLE, TIME, MEMORY, BOOL, STRING, CSTRING,
RESTRING, HOST and RSMAP. See man complex for moredetailed format descriptions. A CSTRING is a case insensitivestring type. A RSMAP (resource map) is similar to an INT butmust be a consumable and have additional functionalities,such as mapping a job not only to a number of resourcesbut also to specific resource instances.

relop Specifies the relation operator used for comparison of theuser requested value and the current value of the complex.The following operators are allowed: ##, <, >, <=, >=,and EXCL. The EXCL operator is used to define hostexclusive of queue exclusive access control.
requestable Possible values are y, yes, n, no, and f, forced. Yesmeans that a user can request this resource, no denotesthe resource non-requestable, and forced rejects all jobswhich do not request this resource.
consumable Possible values are y, yes, n, no, j, job, and h, host. A

yes value declares a complex as a consumable. When jobis set, the complex is a per job consumable. Since 8.1.3there is a h, host consumable which is a per-hostconsumable. This type is only allowed with the type RSMAP.
default When the complex is a consumable, a default request canbe set here. It is overridden when a job requests thiscomplex on the command line.
urgency Defines the resource urgency. When a user requests thisresource, this resource urgency is taken into account whenthe scheduler calculates the priority of the job (see UrgencyPolicy).
aapre Defines whether a consumable resource will be reportedas available when a job that consumes such a resource ispreempted. For all non-consumable resources it can onlybe set to NO. For consumables it can be set to YES or NO.The aapre attribute of the slots complex can only be set toYES. After the installation of AGE all memory-basedcomplexes are defined as consumable and aapre is also setto YES. As a result preempted jobs will report memory ofthose jobs as available that are in the preempted(suspended) state.
affinity Defines the resource affinity factor. A value of 0 means thatno affinity is configured for the variable, a positive valuemeans that affinity is configured (jobs already running on ahost attract other jobs), a negative value means thatanti-affinity is configured (jobs already running on a hostreject other jobs). See Affinity, Anti-Affinity, Best Fit

Grid Engine Administrator’s Guide v 8.7.0 81

1 Navigating and Understanding

Attribute Description
do_report Defines whether a resource may be reported as a loadvalue. When it is set to YES, load values gathered on anexecution host will be reported. When set to NO, no loadvalues will be reported. Exceptions are all “m_mem_*” andall “cuda.*” complex variables which will always bereported.
is_static Defines whether the load value for a resource is consideredto be static (does not or seldom changes) or dynamic(constantly changes).

After a default installation, at least the following complexes are available (there are moredepending on the product version):
> qconf -sc
#name shortcut type rel. req. cons. def. urg. aapre aff. do_rep. is_sta.
#---
arch a RESTRING ## YES NO NONE 0 NO 0.0 YES YES
calendar c RESTRING ## YES NO NONE 0 NO 0.0 YES NO
cpu cpu DOUBLE >= YES NO 0 0 NO 0.0 YES NO
d_rt d_rt TIME <= YES NO 0:0:0 0 NO 0.0 YES NO
display_win_gui dwg BOOL ## YES NO 0 0 NO 0.0 YES NO
docker dock BOOL == YES NO 0 0 NO 0.0 YES NO
docker_api_version dockapi DOUBLE <= YES NO 0 0 NO 0.0 YES NO
docker_images dockimg RESTRING == YES NO NONE 0 NO 0.0 YES NO
docker_version dockver DOUBLE <= YES NO 0 0 NO 0.0 YES NO
h_core h_core MEMORY <= YES NO 0 0 NO 0.0 YES NO
h_cpu h_cpu TIME <= YES NO 0:0:0 0 NO 0.0 YES NO
h_data h_data MEMORY <= YES NO 0 0 NO 0.0 YES NO
h_fsize h_fsize MEMORY <= YES NO 0 0 NO 0.0 YES NO
h_rss h_rss MEMORY <= YES NO 0 0 NO 0.0 YES NO
h_rt h_rt TIME <= YES NO 0:0:0 0 NO 0.0 YES NO
h_stack h_stack MEMORY <= YES NO 0 0 NO 0.0 YES NO
h_vmem h_vmem MEMORY <= YES NO 0 0 NO 0.0 YES NO
hostname h HOST ## YES NO NONE 0 NO 0.0 YES NO
load_avg la DOUBLE >= NO NO 0 0 NO 0.0 YES NO
load_long ll DOUBLE >= NO NO 0 0 NO 0.0 YES NO
load_medium lm DOUBLE >= NO NO 0 0 NO 0.0 YES NO
load_short ls DOUBLE >= NO NO 0 0 NO 0.0 YES NO
m_cache_l1 mcache1 MEMORY <= YES NO 0 0 NO 0.0 YES YES
m_cache_l2 mcache2 MEMORY <= YES NO 0 0 NO 0.0 YES YES
m_cache_l3 mcache3 MEMORY <= YES NO 0 0 NO 0.0 YES YES
m_core core INT <= YES NO 0 0 NO 0.0 YES YES
m_gpu mgpu INT <= YES NO 0 0 NO 0.0 YES YES
m_mem_free mfree MEMORY <= YES YES 0 0 YES 0.0 YES NO
m_mem_free_n0 mfree0 MEMORY <= YES YES 0 0 YES 0.0 YES NO
m_mem_free_n1 mfree1 MEMORY <= YES YES 0 0 YES 0.0 YES NO
m_mem_free_n2 mfree2 MEMORY <= YES YES 0 0 YES 0.0 YES NO

Grid Engine Administrator’s Guide v 8.7.0 82

1 Navigating and Understanding

m_mem_free_n3 mfree3 MEMORY <= YES YES 0 0 YES 0.0 YES NO
m_mem_total mtotal MEMORY <= YES YES 0 0 YES 0.0 YES YES
m_mem_total_n0 mmem0 MEMORY <= YES YES 0 0 YES 0.0 YES YES
m_mem_total_n1 mmem1 MEMORY <= YES YES 0 0 YES 0.0 YES YES
m_mem_total_n2 mmem2 MEMORY <= YES YES 0 0 YES 0.0 YES YES
m_mem_total_n3 mmem3 MEMORY <= YES YES 0 0 YES 0.0 YES YES
m_mem_used mused MEMORY >= YES NO 0 0 NO 0.0 YES NO
m_mem_used_n0 mused0 MEMORY >= YES NO 0 0 NO 0.0 YES NO
m_mem_used_n1 mused1 MEMORY >= YES NO 0 0 NO 0.0 YES NO
m_mem_used_n2 mused2 MEMORY >= YES NO 0 0 NO 0.0 YES NO
m_mem_used_n3 mused3 MEMORY >= YES NO 0 0 NO 0.0 YES NO
m_numa_nodes nodes INT <= YES NO 0 0 NO 0.0 YES YES
m_socket socket INT <= YES NO 0 0 NO 0.0 YES YES
m_thread thread INT <= YES NO 0 0 NO 0.0 YES YES
m_topology topo RESTRING ## YES NO NONE 0 NO 0.0 YES YES
m_topology_inuse utopo RESTRING ## YES NO NONE 0 NO 0.0 YES YES
m_topology_numa unuma RESTRING ## YES NO NONE 0 NO 0.0 YES YES
mem_free mf MEMORY <= YES NO 0 0 NO 0.0 YES NO
mem_total mt MEMORY <= YES NO 0 0 NO 0.0 YES YES
mem_used mu MEMORY >= YES NO 0 0 NO 0.0 YES NO
min_cpu_interval mci TIME <= NO NO 0:0:0 0 NO 0.0 YES NO
np_load_avg nla DOUBLE >= NO NO 0 0 NO 0.0 YES NO
np_load_long nll DOUBLE >= NO NO 0 0 NO 0.0 YES NO
np_load_medium nlm DOUBLE >= NO NO 0 0 NO 0.0 YES NO
np_load_short nls DOUBLE >= NO NO 0 0 NO 0.0 YES NO
num_proc p INT ## YES NO 0 0 NO 0.0 YES YES
qname q RESTRING ## YES NO NONE 0 NO 0.0 YES NO
rerun re BOOL ## NO NO 0 0 NO 0.0 YES NO
s_core s_core MEMORY <= YES NO 0 0 NO 0.0 YES NO
s_cpu s_cpu TIME <= YES NO 0:0:0 0 NO 0.0 YES NO
s_data s_data MEMORY <= YES NO 0 0 NO 0.0 YES NO
s_fsize s_fsize MEMORY <= YES NO 0 0 NO 0.0 YES NO
s_rss s_rss MEMORY <= YES NO 0 0 NO 0.0 YES NO
s_rt s_rt TIME <= YES NO 0:0:0 0 NO 0.0 YES NO
s_stack s_stack MEMORY <= YES NO 0 0 NO 0.0 YES NO
s_vmem s_vmem MEMORY <= YES NO 0 0 NO 0.0 YES NO
seq_no seq INT ## NO NO 0 0 NO 0.0 YES NO
slots s INT <= YES YES 1 1000 YES 0.0 YES NO
swap_free sf MEMORY <= YES NO 0 0 NO 0.0 YES NO
swap_rate sr MEMORY >= YES NO 0 0 NO 0.0 YES NO
swap_rsvd srsv MEMORY >= YES NO 0 0 NO 0.0 YES NO
swap_total st MEMORY <= YES NO 0 0 NO 0.0 YES YES
swap_used su MEMORY >= YES NO 0 0 NO 0.0 YES NO
tmpdir tmp RESTRING ## NO NO NONE 0 NO 0.0 YES NO
virtual_free vf MEMORY <= YES NO 0 0 NO 0.0 YES NO
virtual_total vt MEMORY <= YES NO 0 0 NO 0.0 YES YES
virtual_used vu MEMORY >= YES NO 0 0 NO 0.0 YES NO

Initializing Complexes

Grid Engine Administrator’s Guide v 8.7.0 83

1 Navigating and Understanding

After a complex is configured in the complex configuration, it must be initialized with ameaningful value. The initialization can be done on global, host, or queue level. When acomplex is initialized on global level, the complex is available on the complete cluster. For aconsumable, the accounting for the consumable is done cluster-wide. Host-level complexesare available after altering the local cluster configuration on the specific host. They areavailable and accounted for in all queue instances on the host. Queue-level complexes areconfigured for the complete queue but accounted on the host level.
In order to initialize a pre-configured complex as a global complex, the complex_valuesattribute in the global host configuration has to be edited. In the following example, a com-plex with the name complexname is initialized with the value 10.
> qconf -me global
...
complex_values complexname=10

Host complexes are configured similarly, but instead of editing the global host configura-tion, the local host configuration must be changed.
> qconf -me hostname
...
complex_values complexname=10

Queue complexes are configured in the queue configuration:
> qconf -mq queuename
...
complex_values complexname=10

After setting this, each queue instance (each host on which the queue is configured) hasa complex complexname with the value 10 defined. If this complex is a consumable, andthe queue spans over 5 hosts, then overall 50 units can be consumed (10 per queue in-stance). Sometimes the complex must be initialized with different values on each queueinstance (i.e. here on different hosts). This can be done with the “[" "]” syntax. The followingexample assigns the complex complexname on queue instance queue1@host1 10 units, on
queue1@host2 5 units, and on all other queue instances 20.
> qconf -mq queuename
...
complex_values complexname=20,[host1=complexname=10],[host2=complexname=5]

Using Complexes

After adding and initializing a new complex, the value of the complex can be shown eitherwith qhost (host level complexes) or with qstat (host, queue, and global complexes).
The qstat -F <complexname> shows the state of the complex complexname on each queueinstance. The output of all available complexes can be seen with qstat -F.
Grid Engine Administrator’s Guide v 8.7.0 84

1 Navigating and Understanding

> qstat -F complexname
queuename qtype resv/used/tot. load_avg arch states

all.q@tanqueray BIPC 0/0/20 0.10 lx-amd64

qc:complexname=20

all.q@unertl BIPC 0/1/10 0.00 lx-amd64

qc:complexname=50

The prefix qc indicates that the type of the complex is a queue-based consumable. Othercommon prefixes are qf (global complex with a fixed value), and hl (host complex basedon load value). Host-specific values can also be shown via qhost -F.
The following table lists the prefix letters.

Table 69: Meaning of Different Prefixes fromComplexes Shownby qstat and qhost

Prefix Letter Description
g Cluster global based complex
h Host-based complex
q Queue (queue-instance) based complex
l Value is based on load report
L Value is based on a load report, which is modified through theload scaling facility
c Value is a based on consumable resource facility
f The value is fixed (non-consumable complex attribute or a fixedresource limit)

If a complex is requestable (REQUESTABLE equals YES), a user can request this resource atjob submission time as either a hard or a soft request. A default request is a hard request,whichmeans that the job only runs on execution hosts/queue instanceswhere the resourcerequest can be fulfilled. If requesting a resource as a soft request (see qsubman page -softparameter), the Altair Grid Engine scheduler tries to dispatch the jobwith as few soft requestviolations as possible.
The following example shows how 2 units of the consumable complex complexname arerequested:
> qsub -l complexname=2 -b y /bin/sleep 120

Configuring Load Sensors

By default, the Altair Grid Engine execution daemons report the most common host loadvalues, such as average CPU load, amount of memory, and hardware topology values suchas the number of CPU cores. If more site specific resource state values are needed, AltairGrid Engine supports this with the load sensor facility. A load sensor can be a self-createdexecutable binary or a load sensor script that must just follow a few simple predefined

Grid Engine Administrator’s Guide v 8.7.0 85

1 Navigating and Understanding

rules. The communication between the execution daemon and the load sensor is done viastandard input and standard output of the load sensor.
Load sensors are registered in the global or local cluster configuration (qconf -mconf,
load_sensors), in which the execution host specific local cluster configuration overridesthe global configuration. Load sensors are registered as a comma-separated list ofabsolute paths to the load sensors.
On Windows: The path to Windows load sensors must be configured in UNIX notation andthe path_map file must contain the corresponding mapping. Both Windows batch scriptsand Windows executables can be configured.
A correct load sensor must respect the following rules:

• The load sensor must be implemented as an endless loop.
• When “quit” is read from STDIN, the load sensor should terminate.
• When end-of-line is read from STDIN, the load sensor has to compute the load valuesand write the load sensor report to STDOUT.

The load sensor report must have the following format:
• A report starts with a line containing either the keyword “start” or the keyword “begin”.
• A report ends with a line containing the keyword “end”.
• In between, the load values are sent. Each load value is a separate line with the fol-lowing format:

host:name:value. The host denotes the host on which the load is measured or “global” inthe case of a global complex. The name denotes the name of the resource (complex) asspecified in the complex configuration. The value is the load value to be reported.
On Windows: In Windows executable load sensors, it is necessary to flush STDOUT afterthe keyword “end” is written to it. Otherwise, the load values will be transferred to theexecution daemon not before the STDOUT buffer is full. In batch load sensors, the “echo”command flushes STDOUT.
For a load value gathered by a load sensor to be actually reported, the corresponding vari-able must be defined in the complex configuration with attribute do_report being set toYES.
Sample load sensor scripts can be found here: $SGE_ROOT/util/resources/loadsensors/.Also consider the man page sge_execd(8) for additional information.
1.10.4 Configuring and Using the RSMAP Complex Type

This section describes the new complex type RSMAP, which was introduced in Altair GridEngine version 8.1.0.
Whenmanaging host resources such as GPU devices it is not always sufficient to handle justthe amount of installed resources, which is usually done with an integer host consumable.
Grid Engine Administrator’s Guide v 8.7.0 86

1 Navigating and Understanding

Additionally there is a need to orchestrate access to specific devices in order to make surethat there are no conflicts for individual devices and that they can be accessed properly.Traditionally this is done by wrapper scripts, which are installed on the execution hostsor by partitioning hosts through different queues. The new host complex type RSMAP notonly restricts the amount of units of a resource used concurrently on a host, it also attachesidentifiers to resource units and assigns them to the jobs when they are dispatched to thathost. Thereby a job gets attached to a specific unit (an ID) of such a resource.
The first section below shows how such an RSMAP complex is created. Afterwards the usageof such complexes is shown. The last section shows the behavior of the complex types inconjunction with special job types, such as parallel jobs and job arrays.
Creation and Initialization of RSMAP Complexes

A new complex of the type RSMAP (resource map) is created like all other complexes withthe qconf command. Usually the complex is added by hand, meaning using an editor with
qconf -mc.
Like all complexes it needs a name and a shortcut. The type must be RSMAP. The onlyallowed RELOP is <=. It should be made requestable from the command line. It must be a
consumable (YES or in case of a per job consumable JOB. Since Altair Grid Engine 8.1.3 itcan also be set to HOST, which means that the requested amount is handled as a per-hostrequest for all hosts the job might span). Since the default values are not attached to jobs(which is very important for the RSMAP), setting a default value is not allowed. Dependingon the scheduler configuration, the attribute urgency can be increased in order to increasethe scheduling priority of jobs requesting this complex attribute.
A RSMAPmaps jobs to one ormore specified IDs. An ID can be any kind of number or stringand IDs are not required to be unique. Those IDs are either cluster global or host specific.With one complex type you can define a set of different IDs. Note that this can also be usedto reduce the need for multiple complexes with versions prior to 8.1 in some situations.
Example:

Adding a new RSMAP complex called “ProcDevice” to the Altair Grid Engine system.
> qconf -mc
#name shortcut type relop requestable consumable default urgency
#---
ProcDevice pd RSMAP <= YES YES 0 0

After the new complex is announced to the Altair Grid Engine system it is initialized withdifferent IDs. This can be done either on the host level or on the cluster global level. It cannot be used on the queue level.
Example:

Initializing the “ProcDevice” complex on host host1 with the IDs “device0” and “device1”.
> qconf -me host1
...
complex_values ProcDevice=2(device0 device1)

Grid Engine Administrator’s Guide v 8.7.0 87

1 Navigating and Understanding

The initialization line is similar to a consumable but with an additional specifier in bracketsdenoting the ID list. IDs can also be numerical ranges like (1-10) which is a shortcut for (1
2 3 4 5 6 7 8 9 10). You can also mix ranges with arbitrary strings ((NULL 100-113 INF)),and also multiple identical values are allowed (0 0 0 0 1 1 1 1). Those can be useful, forinstance, if devices are installed, which can be accessed multiple times.
Usage of RSMAP Complexes

Like consumables, the resource map values can be requested during job submission. Thefollowing example shows two jobs each requesting one of the configured “ProcDevices” (inthe examples above).
> qsub -b y -l ProcDevice=1 sleep 3600
Your job 9 ("sleep") has been submitted
> qsub -b y -l ProcDevice=1 sleep 3600
Your job 10 ("sleep") has been submitted
...
> qstat -j 9
==
job_number: 9
...
hard resource_list: ProcDevice=1
...
resource map 1: ProcDevice=macsuse=(device0)
...

> qstat -j 10
==
job_number: 10
...
hard resource_list: ProcDevice=1
...
resource map 1: ProcDevice=macsuse=(device1)
...

As you can see, each job has received a different device ID. This actual device ID can beaccessed via the SGE_HGR_ProcDevice environment variable.
Example:

The device ID is needed by an application as parameter. The application is started by a jobscript.
#!/bin/sh
...
myapp $SGE_HGR_ProcDevice
...

RSMAP Topology Masks

Grid Engine Administrator’s Guide v 8.7.0 88

1 Navigating and Understanding

In certain situations it is useful to map specific host resources to specific host topologyentities, such as CPU cores and sockets. In case of a multi-socket NUMA machine, someresources (such as co-processors or network devices) are connected to specific sockets.Altair Grid Engine supports such configurations by allowing definition of topology masks inthe RSMAP configuration.
RSMAP topology masks are strings, very similar to topology strings (complex valuesm_topology and m_topology_inuse), which prohibit jobs from using certain masked CPUcores (or complete sockets). A topology string for an eight-core processor for exampleis “SCCCCCCCC”, while a two-socket quad-core system is represented by “SCCCCSCCCC”.Allowed characters in a topology mask are “S” (“s”), which represents a socket, “C” which isan allowed (not masked core), “c”, which is a masked (not allowed) core, and “T” (“t”), whichrepresents a hardware thread. Since single threads cannot be masked (only completecores), the “T”/“t” character is ignored. Important are the “C” and “c” values, which allow ordisallow the usage of the cores.
Examples: The topology mask “SccSCC” allows the usage of the second socket (with core 0and 1), while the usage of the first socket is prohibited. The topology mask “SCcCCSccCC”allows the usage of first, third, and fourth core on the first socket and the third and fourthcore of the second socket.
In order to map a host resource with a certain topology, such a topology mask must beappended in the RSMAP initialization. In the example of the last subsection a resource mapcontaining 2 devices was defined.
complex_values ProcDevice=2(device0 device1)

Let’s assume that device0 is connected to the first socket, and device1 to the second socketof a dual-socket quad-core machine. To make the Altair Grid Engine scheduler aware ofthis mapping, a topology mask must be appended to the configuration. First check that inthe complex configuration in the consumable column, the value HOST is set. RSMAPs withtopology masks must be HOST consumables since CPUs are host resources and have to bechosen independent from any queues a parallel job might run in. After this is done thetopology mask can be set by appending it with an additional colon.
qconf -me <hostname>
...
complex_values ProcDevice=2(device0:SCCCCScccc device1:SccccSCCCC)

When the scheduler selects the device0 for the job, the job is automatically bound to thefree cores of the first socket (because the topologymaskmarks the second socket internallyas being used). If there is already a job running, which is bound on cores of the first socket,only the unbound cores can be used for the job. When the job comes with an own (implicitor explicit) core binding request, that request is honored as well. But it is never possiblethat the job gets bound to cores of the second socket.
Two examples demonstrating this behavior:

First submit a job requesting one core:

Grid Engine Administrator’s Guide v 8.7.0 89

1 Navigating and Understanding

$ qsub -b y -binding linear:1 -l ProcDevice=1 sleep 123
Your job 29 ("sleep") has been submitted

$ qstat -j 29
==
...
binding 1: maui=0,0
resource map 1: ProcDevice=maui=(device0)

The jobs gets one core on the selected device, allowed from the topology mask.
Now submit a job requesting just the device.
$ qsub -b y -l ProcDevice=1 sleep 123
Your job 30 ("sleep") has been submitted

$ qstat -j 30
==
binding 1: maui=1,0:1,1:1,2:1,3
resource map 1: ProcDevice=maui=(device1)

The job gets all free cores, which are allowed by the RSMAP topology mask.
Special Jobs
The resource map (RSMAP) complex can be used in conjunction with other job types, likearray jobs and parallel jobs, as well. The next sections describe the behavior and showsome detailed examples.
Array jobs and the RSMAP Complex
When an array job is submitted, the same job (job script or binary) is started multiple times.This can be useful for data parallel applications, where the same processing must be per-formed on different data sets. Like a job, each of the array job tasks can be assigned to aresource ID out of the created pool (ID list). During job submission the resource requestsare done per task, so when requesting one resource ID but two tasks, each task gets adifferent resource ID (if they are unused).
Example:
In this example we configure 10 new devices on host host1 with device numbers 100, 101,. . . , 109.
> qconf -mc
#name shortcut type relop requestable consumable default urgency
#--
devices dev RSMAP <= YES YES 0 0

> qconf -me host1
...
complex_values dev=10(100-109)
...

Grid Engine Administrator’s Guide v 8.7.0 90

1 Navigating and Understanding

Now an array job with 10 tasks is started, which requests 2 devices per task.
> qsub -l devices=2 -t 1:10 $SGE_ROOT/examples/jobs/sleeper.sh 3600
Your job-array 5.1-10:1 ("Sleeper") has been submitted

> qstat
job-ID prior name user state submit/start at queue slots ja-task-ID
--

5 0.55500 Sleeper user r 07/07/2011 09:04:56 all.q@host1 1 1
5 0.55500 Sleeper user r 07/07/2011 09:04:56 all.q@host1 1 2
5 0.55500 Sleeper user r 07/07/2011 09:04:56 all.q@host1 1 3
5 0.55500 Sleeper user r 07/07/2011 09:04:56 all.q@host1 1 4
5 0.55500 Sleeper user r 07/07/2011 09:04:56 all.q@host1 1 5
5 0.55500 Sleeper user qw 07/07/2011 09:04:55 1 6-10:1

As you can see just 5 jobs are able to run because the devices are limited to 10 at a time. Alljobs are running on host1.
> qstat -j 5
==
job_number: 5
...
hard resource_list: devices=2
...

resource map 1: devices=host1=(100 101)
resource map 2: devices=host1=(102 103)
resource map 3: devices=host1=(104 105)
resource map 4: devices=host1=(106 107)
resource map 5: devices=host1=(108 109)
scheduling info: (-l devices=2) cannot run in queue "all.q@host3"

because job requests unknown resource (devices)
(-l devices=2) cannot run in queue "all.q@host2"

because job requests unknown resource (devices)
(-l devices=2) cannot run at host "host1" because

it offers only hc:devices=0.000000

The qstat output shows that each task has been allocated two different IDs.
Parallel Jobs and the RSMAP Complex
Resourcemaps can also be used by parallel jobs. The amount of IDs a parallel job is grantedis exactly the same as for traditional consumables. If a parallel job with, for instance, 4 slotshas an additional request for a resource map complex, the total granted IDs are slots * re-
quested amount. Sometimes the amount of resources needed by the job does not dependon the amount of granted slots. Then a resource map (RSMAP) complex can be configuredto allocate the amount of requested resources during submission time (without multipli-cation by slots). This is accomplished by setting JOB instead of YES for the consumableattribute in the complex configuration (qconf -mc). Then the resource map is a per job con-sumable complex. The drawback is that per job resources are only granted on the host of
Grid Engine Administrator’s Guide v 8.7.0 91

1 Navigating and Understanding

themaster task. Hence RSMAPs also can be configured as per host consumables, when the
consumable attribute is set toHOST. That allows requesting a specific amount of resourcesper host independent of the amount of granted slots per host.
Example:
In this example we are submitting an OpenMP job, which runs on exactly one host but hasmultiple threads performing work in parallel. This job needs access to one GPU regardlesshow many OpenMP threads are spawned.
In order to declare the GPU devices (let’s say 2 are added on host1), the complex must becreated. Because a fixed number of GPUs are accessed per job (and not per granted slot)the complex is a JOB consumable.
> qconf -mc
#name shortcut type relop requestable consumable default urgency
#--
GPGPU gp RSMAP <= YES **JOB** 0 0

Now the complex must be initialized on host1.
> qconf -me host1
...
complex_values GPGPU=2(GPU0 GPU1)
...

The parallel environment (here calledmytestpe) must be set up for the OpenMP jobs with
$pe_slots.
> qconf -mpe mytestpe
pe_name mytestpe
slots 24
user_lists NONE
xuser_lists NONE
start_proc_args NONE
stop_proc_args NONE
allocation_rule $pe_slots
control_slaves FALSE
job_is_first_task TRUE
urgency_slots min
accounting_summary FALSE

Now start the parallel job using 12 cores but just one GPU.
> qsub -pe mytestpe 12 -l GPGPU=1 jobscript

> qstat -j 6
==
job_number: 6

Grid Engine Administrator’s Guide v 8.7.0 92

1 Navigating and Understanding

...
hard resource_list: GPGPU=1
...
parallel environment: mytestpe range: 12
binding: NONE
usage 1: cpu=00:00:00, mem=0.00044 GBs,

io=0.00012, vmem=19.125M, maxvmem=19.125M
binding 1: NONE
resource map 1: GPGPU=macsuse=(GPU0)

The parallel job has received just one GPU device because the complex was configured asa per job resource map. If it were a consumable (YES) it couldn’t be started because 12 IDswould be needed and would have to be configured for the complex attribute GP.
1.10.5 Managing Access to Devices with RSMAPs

Since Altair Grid Engine 8.6.0 it is possible to manage access to host devices via RSMAPs.Each id of a RSMAP complex can be configured to represent a device on the host by settingthe new paramater “device” (each device can be represented by more than one RSMAP id).In the example below a RSMAP complex gpu is initializedwith two ids and each id ismappedto an NVIDIA GPU:
complex_values gpu=2(gpu0[device=/dev/nvidia0] \

gpu1[device=/dev/nvidia1])

The assigned devices are shown in the qstat output of a job:
> qsub -l gpu=1 $SGE_ROOT/examples/jobs/sleeper.sh 3600
Your job 7 ("Sleeper") has been submitted

> qstat -j 7
==
job_number: 7
...
hard resource_list: gpu=1
...
granted devices <host>: /dev/nvidia0

In a default environment the configuration and assignment of devices has no effect onthe scheduling, but if cgroups are available the cgroups parameter “devices” can be set toa list of devices that should be managed by Altair Grid Engine. Read/write access to alldevices in the list will be blocked via cgroups and jobs will only be able to access devicesthat were assigned to them via RSMAPs. With the following configuration Altair Grid Enginewill manage access to all NVIDIA GPUs (i.e. all devices from /dev/nvidia0 to /dev/nvidia254):
cgroups_params cgroup_path=/sys/fs/cgroups devices=/dev/nvidia[0-254]

Grid Engine Administrator’s Guide v 8.7.0 93

1 Navigating and Understanding

Note: Multiple devices with different paths can be configured by separating their paths with“|”, e.g.
cgroups_params cgroup_path=/sys/fs/cgroups devices=/dev/nvidia[0-254]|/dev/nvidiactl

1.10.6 Advanced Attribute Configuration

With Altair Grid Engine, it is also possible to modify internal objects directly. The followingtable shows the commands supporting direct object configurations:
Table 70: Commands for Direct Object Modification

Command Result
qconf -aattr obj_nm
attr_nm val obj_id_list

Adds a new specification of an attribute/value pair intoan object (queue, exechost, hostgroup, pe, rqs, ckpt) witha specific characteristic (e.g. for a queue, it is added onlyto the queue with the name defined in obj_id_list).
qconf -Aattr obj_nm fname
obj_id_list

Same as above but the attribute name and attributevalue is taken from a file given by the file name fname.
qconf -dattr obj_nm
attr_nm val obj_id_list

Deletes an object attribute.
qconf -Dattr obj_nm fname
obj_id_list

Deletes an object attribute by a given file.
qconf -mattr obj_nm
attr_nm val obj_id_list

Modifies an object attribute.
qconf -Mattr obj_nm fname
obj_id_list

Modifies an object attribute based on a given file.
qconf -purge obj_nm3
attr_nm objectname

Removes overriding settings for a queue domain(queue@@hostgroup) or a queue instance. If ahostgroup is specified, it just deletes the settings for thehostgroup and not for each single queue instance.
qconf -rattr obj_nm
attr_nm val obj_id_list

Replaces an object attribute.
qconf -Rattr obj_nm fname
obj_id_list

Replaces an object attribute based on a given file.

Example: Modification of a Queue Configuration

The following example shows how this direct object attribute modification can be used toinitialize a queue consumable.
First add a new consumable test to the complex configuration.
> qconf -sc > complexes; echo "test t INT <= YES NO 0 0" >> complexes;
qconf -Mc complexes user@host added "test" to complex entry list

Show the default complex initialization of queue all.q.
Grid Engine Administrator’s Guide v 8.7.0 94

1 Navigating and Understanding

> qconf -sq all.q | grep complex_values
complex_values NONE

Now initialized the consumable test with the value 2 on all queue instances defined by thequeue all.q.
> qconf -aattr queue complex_values test=2 all.q
user@host modified "all.q" in cluster queue list

Show the initialization:
> qconf -sq all.q | grep complex_values
complex_values test=2

Now add a different initialization value for the queue instance all.q@macsuse.
> qconf -aattr queue complex_values test=4 all.q@macsuse
user@host modified "all.q" in cluster queue list

Show the updated queue attribute.
> qconf -sq all.q | grep complex_values
complex_values test=2,[macsuse=test=4]

Remove the configuration for all.q@macsuse.
> qconf -purge queue complex_values all.q@macsuse
user@host modified "all.q" in cluster queue list

Now show the queue configuration again:
> qconf -sq all.q | grep complex_values
complex_values test=2

1.10.7 Configuring and Using Linux cgroups

Newer Linux kernels and distributions support a facility called control groups (cgroups)for improved resource management. Altair Grid Engine has added support for cgroups inversion 8.7 for lx-amd64 hosts. The following requirementsmust be fulfilled for the featuresto work correctly:
• Linux kernel must have support for cgroups (e.g. RHEL 6.0 or later)
• Some distributions require the cgroup package to be installed.

Grid Engine Administrator’s Guide v 8.7.0 95

1 Navigating and Understanding

• cgroups subsystems (memory, cpuset, freezer) need to bemounted to different direc-tories with the subsystem as name of the directory (like /cgroup/memory).
• All subsystems must be mounted in the same parent directory (like /cgroup), this di-rectory is called here cgroup path.

The memory subsystem needs to have the following configuration parameters available:
_memory.limit_in_bytes_, _memory.soft_limit_in_bytes_, _memory.memsw.limit_in_bytes_.

The cpuset subsystem needs to support: cpuset.cpus, cpuset.mems.
Availability can be checked by doing an ls on the subsystem (like ls /cgroup/memory). Pleaseconsult your OS documentation for activating/mounting cgroups. Altair Grid Engine alsosupports trying to auto-mount subsystems, but this might fail depending on the Linux dis-tribution/version.
Tested Linux distributions at the time of initial release of the feature: RHEL / CentOS >= 6.0-
6.4. Mint Linux 14. Ubuntu 12.04. openSUSE 12.3.
Further details of the cgroups implementation can be found in the sge_conf manual page.
Enabling cgroups Support in Altair Grid Engine
Since support for cgroups depends on the host type it can be configured in the global(qconf -mconf global) and/or local host configuration (_qconf -mconf <hostname>_) in a newattribute called cgroups_params. In the default configuration after installation it is turnedoff:
> qconf -sconf global
cgroups_params cgroup_path=none subdir_name=AGE \

cpuset=true mount=false freezer=false \
freeze_pe_tasks=false killing=false \

forced_numa=false h_vmem_limit=false \
m_mem_free_hard=false m_mem_free_soft=false \
min_memory_limit=0

When cgroups_params are configured in the local host configuration they override theglobal configuration parameters. If a parameter is not listed in the local configuration, thevalue of the global parameter is used. If the parameter is not listed anywhere, the defaultvalue (none, false, or 0) is used.
In order to enable cgroups the cgroup_path must be set to the correct (existing) path. Typ-ical locations are /cgroup or /sys/fs/cgroup. If cgroup_path is set to none, cgroups is dis-abled, even if other parameters are set.
Ifmount is set to 1 or true, Altair Grid Engine tries to mount a subsystem whether or not itis mounted yet.
In the following subsections the different behaviors of jobs running within cgroups are ex-plained.
Enabling cpuset for core binding

Grid Engine Administrator’s Guide v 8.7.0 96

1 Navigating and Understanding

When using core binding in Linux, system calls are made (like sched_setaffinity) before thejob starts in order to bind it on Altair Grid Engine selected processor ids. One drawback isthat the user application can revert that by calling the same system calls. When the cgroupparameter cpuset is set to 1 or true Altair Grid Engine puts the job into a cpuset cgroupwith the specific CPU ids assigned. This ensures that the job cannot re-bind the job to otherthan granted CPUs.
If forced_numa is set to 1 or true, on NUMA machines only local memory (memory in thesame NUMA zone) is allowed to be used when the job requests memory allocation with
-mbind cores:strict.
Using cgroups for job suspend and resume

The default suspension mechanism is sending SIGSTOP signals to the application and SIG-CONT for resumption. This is not always what the application needs because SIGCONT iscatchable and may break functionality of the application. The cgroups freezer subsystemallows suspend and resume without sending signals. The scheduler just does not sched-ule the process any more; it stays in the same state, as if it is waiting for I/O resources (Pstate). If the freezer parameter is set to 1 or true, the whole job (without the shepherdprocess) is frozen by the kernel. This behavior can made application-specific by overridingit in the queue configuration. If a job needs the signal, in the queue where the job runs the
suspend_method can be set to SIGSTOP and resume to SIGCONT. For those jobs the freezersubsystem is turned off.
The behavior for tightly integrated parallel jobs can be controlled by the freeze_pe_tasksparameter. If set to false (default), slave tasks are not put in the freezer (also slaves onmaster host which are started by a new shepherd using qrsh). If set to 1 or true, all slavetasks are frozen (also slaves on remote hosts). If a queue overrides the freezer by a sig-nal, the execd_param SUSPEND_PE_TASKS is taken into account (true when not set) for theappropriate behavior.
Using cgroups for main memory and swap space limitation

Mainmemory can be limited by using the cgroupsmemory subsystem. It is controlled by thecgroups parameters m_mem_free_hard and m_mem_free_soft. If m_mem_free_hard isset to 1 or true, the Linux kernel ensures that the job does not usemoremainmemory thanrequired. For the main memory footprint also the shepherd process is taken into account.The limit can be requested with them_mem_freememory request.
$ qsub -l m_mem_free=12G ...

For parallel jobs the memory request is multiplied by the amount of slots the job wasgranted on the specific host. Note that some Linux distributions (e.g. RHEL) have bugs incounting memory for forked processes so that the overhead could be very high (200M in-stead of a fewmegabyte per shepherd). This can be tested by looking at the h_vmem valuesin the accounting file (qacct -j <jobnumber>). If m_mem_free_soft is set to 1 or true (andhardmemory limit is turned off), the requestedmemory withm_mem_free is a soft limit. De-pending on the Linux kernel it allows the process to consume more than allowed memoryif there is still free memory left on the execution host. If the memory is too low the job’smemory footprint is pushed back to the limits (consuming more swap space). More detailscan be found in the Linux kernel documentation.

Grid Engine Administrator’s Guide v 8.7.0 97

1 Navigating and Understanding

Main memory and swap space can be limited with cgroups by setting h_vmem to 1 or true.Then instead of setting rlimits the job is put into a cgroup using the memory subsystemsetting the memory.memsw.limit_in_bytes parameter. Together with a lower m_mem_free re-quest this allows enforcing a main memory limit for the job when the host is at its limits.This eliminates the risk that a job slows down other jobs when consuming more than itsrequested memory. The job will slow down itself or fail.
A host-based minimum memory limit can be set in the min_memory_limit parameterwhich accepts Altair Grid Engine memory values (such as bytes or values like 10M, 1G).If a job requested a memory limit and the limit is smaller than this configured value thememory limit is automatically increased to the limit without affecting job accounting. Thisis useful for solving host-related issues involving job memory footprints that are too high,or to prevent users from setting limits for their jobs that are too low.
cgroups-based killing of processes
Under some rare conditions processes of a job can survive Altair Grid Engine induced jobtermination. This risk can be eliminated by using the killing parameter. If set to 1 or trueAltair Grid Engine signals all processes forked or started by the job until all of them arekilled.
Examples
In the following examples first the configuration of cgroups_params is shown, then thepertinent command-line requests for submitting the corresponding jobs.
Restricting main memory
Enabling hard memory limitation for host oahu.
$ qconf -sconf oahu > oahu
$ echo "cgroups_params cgroup_path=/sys/fs/cgroup m_mem_free_hard=true" >> oahu
$ qconf -Mconf oahu
daniel@oahu modified "oahu" in configuration list
$ qconf -sconf oahu
#oahu:
xterm /usr/bin/xterm
mailer /bin/mail
cgroups_params cgroup_path=/sys/fs/cgroup m_mem_free_hard=true

Submitting a job requesting 768Mmain memory. Note that m_mem_free on the host mustbe lower than the requested value (check qhost -F -h oahu for this).
$ qsub -b y -l h=oahu,m_mem_free=768M memhog -r100 512M

Checking the actual limit on host by inspecting cgroups configuration (when the job is run-ning).
$ cat /sys/fs/cgroup/memory/UGE/151.1/memory.limit_in_bytes
805306368

An interactive job can be submitted in the same way:
Grid Engine Administrator’s Guide v 8.7.0 98

1 Navigating and Understanding

$ qrsh -l m_mem_free=4G

On the remote host the qrsh session is limited to 4G of main memory. In the followingremote session 1G main memory is requested by the memhog utility. Afterwards 3G ofmain memory is occupied by the next start of memhog. This leads to an abortion of thememhog process, but the qrsh session is unaffected by this. Hence the next call of memhogrequesting 1G is again successful.
$ memhog -r1 1G
$...
$ memhog -r1 3G
$...Killed
$ memhog -r1 1G
$...

Job suspend and resume by using the freezer subsystem
This is an example configuration of a homogeneous cluster, where all hosts have the sameconfiguration. The configuration is only done once in the global host object. All cgroupsubsystems are turned on and the minimum memory limit for each job is set to 100M.
$ qconf -sconf global
...
cgroups_params cgroup_path=/sys/fs/cgroup cpuset=true mount=true \

freezer=true freeze_pe_tasks=true killing=true \
forced_numa=true h_vmem_limit=true \
m_mem_free_hard=true m_mem_free_soft=true \
min_memory_limit=100M

Job suspension can be triggered in different ways: suspend on subordinate, queue-basedsuspension, or manual suspension.
The following job with number 152 is suspended manually now using the freezer subsys-tem.
$ qmod -sj 152

When calling qstat the job is in s state. On the execution host the job is put in the freezercgroup.
$ cat /sys/fs/cgroup/freezer/UGE/152.1/freezer.state
FROZEN

After resume it is in the normal state again.
$ qmod -usj 152
daniel - unsuspended job 152
$ cat /sys/fs/cgroup/freezer/UGE/152.1/freezer.state
THAWED

Grid Engine Administrator’s Guide v 8.7.0 99

1 Navigating and Understanding

Restricting main memory and swap space usage
The cgroups configuration required for this setup is:
$ qconf -sconf oahu
...
cgroups_params cgroup_path=/sys/fs/cgroup m_mem_free_soft=true h_vmem_limit=true

Submitting a job requesting 512M main memory and 1024M main memory plus swapspace.
$ qsub -b y -l h=oahu,m_mem_free=512M,h_vmem=1024M <yourjob>

The current kernel behavior is that the job keeps running but the kernel enforces that themain memory usage is pushed back to 512Mwhile the remaining memory is in swap space,in case the host memory is low.
1.11 Monitoring and Modifying User Jobs

Refer to section ‘User Guide -> Monitoring_and_Controlling_Jobs - Monitoring and Control-ling Jobs in the User’s Guide’ for information on how to monitor jobs and how to use AltairGrid Engine commands to make modifications to waiting or already executing jobs.
In addition to the modifications a user can do, an administrator can also do the following:

• Monitor and modify jobs of all users• Set the scheduling priority of a job to a value above the default of 0. The administratormay set this priority to values between -1023 and 1024. This is done with the “-ppriority” option of qalter.• Force the immediate deletion of a job regardless of circumstance. As a normal user,the “-f” option of qdel can be used only if ENABLE_FORCED_QDEL is specified in the
qmaster_params setting of the cluster global configuration. Even if this is specified, thenormal user still can’t force the immediate deletion of a job; the jobwill first be deletedin the normal way, and only if this fails will the deletion be forced. As an administrator,the job deletion will immediately be forced.

1.12 Diagnostics and Debugging

The sections below describe aspects of diagnosing scheduling behavior and obtaining de-bugging information.
1.12.1 KEEP_ACTIVE functionality

Usually, as soon as a job finishes (it does not matter whether it finishes successfully or withan error) the jobs-directory gets deleted immediately. With the KEEP_ACTIVE parameter itis possible to customize this behavior. The KEEP_ACTIVE switch is an execution daemonparameter (execd_params) which can be set via qconf -mconf.

Grid Engine Administrator’s Guide v 8.7.0 100

1 Navigating and Understanding

Table 71: KEEP_ACTIVE Parameters
Parameter Description
FALSE If set to false, the job-directory will be deleted after the jobfinishes.
TRUE If set to true, the job-directory is not deleted and stays at theexecution host.
ERROR If set to error, on job error the job-directory will be sent to theqmaster before it gets deleted from the execd-host.
ALWAYS If set to always, every job-directory will be sent to the qmasterbefore it gets deleted from the execd-host.

For values of ERROR and ALWAYS, qmaster will copy, in addition to the job-directory, thegenerated job-script, all job-related execd-messages, and a summary of the $TMPDIR of thejob to $SGE_ROOT/$SGE_CELL/faulty_jobs/$job_id.
Structure of the jobs-directory

The active jobs directory is $execd_spool_dir/$hostname/active_jobs/$job_id.$task_id/and contains the following files:
File Description
addgrpid Additional group-IDconfig Config of the jobenvironment List of environment variables which are available in the jobshellerror Error messages of the shepherdexit_status Exit status of the job scriptjob_pid PID of the job on the execution hostpe_hostfile Contains all hosts where the parallel job is runningpid PID of the corresponding shepherd on the execution hosttrace Messages file of the corresponding shepherd
<petask.id>.<hostname>Directory which includes all files listed above for every pe-task(only for tightly integrated parallel jobs).

1.12.2 Diagnosing Scheduling Behavior

Altair Grid Engine provides several means that help clarify why the schedulermakes specificdecisions or what decisions it would make based on the current cluster state for a job withspecific requirements.
The qselect command prints the list of possible queues to which a job with the given re-quirements could be scheduled. qselect options are listed below:

• specify all requirements the job has using the “-l” option
• limit the possible queues using the “-q” and “-qs” option

Grid Engine Administrator’s Guide v 8.7.0 101

1 Navigating and Understanding

• specify the job user with the “-U” option
• specify the available parallel environments using the “-pe” option

The -w p option specified in the qsub, qsh, qrsh or qlogin command line prints the sched-uler decisions that would be made for this job with the current cluster state, but does notsubmit the job. When specified in the qalter command line, the -w p option prints this listfor a job that is queued and waiting. This is a rather efficient way to get the scheduling info,but it provides the data only for this very moment.
qstat -j <job_id> prints the “scheduling_info:” for the given job. This is the same datathat qalter -w p <job_id> prints, except that it is collected for the whole lifetime of thejob. This information is available only if the “schedd_job_info” configuration value is setto true in the scheduler configuration. Note that having “schedd_job_info” set to true mayhave severe impacts on the scheduler performance.
qconf -tsm triggers a scheduler run and writes data for all currently queued jobs to thefile $SGE_ROOT/$SGE_CELL/common/schedd_runlog. This slows down the scheduler run sig-nificantly, but is done only for this one scheduler run.
By setting the “params” configuration value to “MONITOR=1” in the scheduler configuration,the scheduler writes one or more lines for every decision it makes about a job or a taskto the file $SGE_ROOT/$SGE_CELL/common/schedule. This is described in detail below in thesection “Turning on Debugging Information”/“Activating Scheduler Monitoring”. This optionalso slows down the scheduling process.
Scheduler profiling helps answer the question of why a scheduler run might be taking solong. Enable scheduler profiling by setting the “params” configuration value to “PROFILE=1”in the scheduler configuration. The scheduler then writes statistics about the scheduler runtimes to the Qmaster messages file. This is described in detail below in the section “Turningon Debugging Information”/“Activating Scheduler Profiling”.
1.12.3 Location of Logfiles and How to Interpret Them

The daemons of Altair Grid Engine write their status information, warnings and errors tolog files, as follows.
Table 73: Daemon Log File Locations

Daemon Log file
sge_qmaster <sge_qmaster_spool_dir>/messagessge_shadowd <sge_qmaster_spool_dir>/messages_shadowd.sge_execd <sge_execd_spool_dir>/messagessge_shepherd <sge_execd_spool_dir>/active_jobs/<job_dir>/tracesge_container_shepherd <sge_execd_spool_dir>/active_jobs/<job_dir>/container_tracedbwriter $SGE_ROOT/$SGE_CELL/common/spool/dbwriter/dbwriter.log

• <sge_qmaster_spool_dir> is the “qmaster_spool_dir” that is defined in the $SGE_ROOT/$SGE_CELL/common/bootstrap file.

Grid Engine Administrator’s Guide v 8.7.0 102

1 Navigating and Understanding

• <host> is the name of the host on which the sge_shadowd is running.
• <sge_execd_spool_dir> is the “execd_spool_dir” from the global or the host local con-figuration (“qconf -sconf” resp. “qconf -sconf ”).
• <job_dir> is composed from the job ID and the task ID, e.g. “42.1”.

All “messages” and “messages_shadowd.<host>” files have the same structure:
05/20/2011 14:27:49| main|kailua|I|starting up UGE 8.0.0 (lx-x86)
05/20/2011 14:30:07|worker|kailua|W|Change of "execd_spool_dir" will not be

effective before sge_execd restart as described in sge_conf(5)
05/20/2011 14:30:23|worker|kailua|E|There are no jobs registered
05/20/2011 14:30:24|worker|kailua|E|sharetree does not exist
05/20/2011 14:30:47|worker|kailua|I|using "/var/spool/gridengine/4080/execd"

for execd_spool_dir
05/20/2011 14:30:47|worker|kailua|I|using "/bin/mail" for mailer

The columns contain the date, time, thread name, host name, message type and the mes-sage itself.
• Date, time and the host name describe when and where the line was written to thelog file.• The thread name is always “main”, except for the sge_qmaster which has severalthreads.• The message type is one of C(ritical), E(rror), W(arning), I(nfo) or D(ebug). Whichmessages are logged is controlled by the “loglevel” setting in the global configura-tion. If this is set to “log_error”, only messages of type “C” and “E” are logged; ifit is “log_warning”, additionally the messages of type “W” are logged; for “log_info”messages of type “I” are also logged; and for “log_debug” messages of all types arelogged.

The “trace” file of the shepherd and the is available only while the job is running, exceptwhen the “execd_params” “KEEP_ACTIVE=TRUE” is set; then it is also available after the jobends. The same applies to the “container_trace” file of the “sge_container_shepherd”, whichis started only for non-autostarting Docker jobs.
Such a trace file looks like this:
05/23/2011 15:09:00 [1000:26811]: shepherd called with uid = 0, euid = 1000
05/23/2011 15:09:00 [1000:26811]: starting up 8.0.0
05/23/2011 15:09:00 [1000:26811]: setpgid(26811, 26811) returned 0
05/23/2011 15:09:00 [1000:26811]: do_core_binding: "binding" parameter not

found in config file

The columns contain the date and time, the effective user ID and the process ID of thesge_shepherd process and the message itself.
The log file of the dbwriter looks like this:
Grid Engine Administrator’s Guide v 8.7.0 103

1 Navigating and Understanding

23/05/2011 14:14:18|kailua|.ReportingDBWriter.initLogging|I|
Starting up dbwriter (Version 8.0.0)

23/05/2011 14:14:18|kailua|r.ReportingDBWriter.initialize|I|
Connection to db jdbc:postgresql://kailua:5432/arco

23/05/2011 14:14:19|kailua|r.ReportingDBWriter.initialize|I|
Found database model version 10

23/05/2011 14:14:19|kailua|tingDBWriter.getDbWriterConfig|I|
calculation file /gridengine/dbwriter/database/postgres/dbwriter.xml
has changed, reread it

23/05/2011 14:14:19|kailua|Writer$VacuumAnalyzeThread.run|I|
Next vacuum analyze will be executed at 24.05.11 12:11

23/05/2011 14:14:19|kailua|ngDBWriter$StatisticThread.run|I|
Next statistic calculation will be done at 23.05.11 15:14

23/05/2011 14:15:19|kailua|er.file.FileParser.processFile|I|
Renaming reporting to reporting.processing

23/05/2011 14:15:19|kailua|iter.file.FileParser.parseFile|W|
0 lines marked as erroneous, these will be skipped

23/05/2011 14:15:19|kailua|iter.file.FileParser.parseFile|I|
Deleting file reporting.processing

Here again, the first two columns are date and time, then the name of the host on whichthe dbwriter is running, the right-most part of the name of the function that did the logging,the type of the message and the message itself.
If the particular module of Altair Grid Engine can’t write to the configured directory for themessages file or it does not get the configuration value at all or it cannot create that direc-tory, it writes a panic file to the /tmp directory (c:\tmp directory onWindows). These are thepaths of the panic files:

Table 74: Daemon Panic File Locations
Daemon Panic file
sge_qmaster /tmp/qmaster_messages.<pid>sge_shadowd /tmp/shadowd_messages.<pid>sge_execd (Unix) /tmp/execd_messages.<pid>sge_execd (Windows) C:\tmp\execd_messages.<pid>sge_shepherd (Unix) /tmp/shepherd.<pid>sge_shepherd(Windows) C:\tmp\shepherd.<pid>
sge_container_shepherd /tmp/container_shepherd.<pid>

If the particular module of Altair Grid Engine writes to a panic file and the environmentvariable SGE_USE_SYSLOG_AT_STARTUP=1 is set in its environment, the same information thatis written to that panic file also is logged to the system log file, e.g. /var/log/syslog onmostLinux derivates. If this environment variable is not set or set to a different value than 1, nomessages are logged to the system log file. It depends on the configuration of the syslogdaemon which information actually appears in the system log file, e.g. it is possible to let itlog only errors and critical messages, but no informational messages.
Grid Engine Administrator’s Guide v 8.7.0 104

1 Navigating and Understanding

If the particular module of Altair Grid Engine can’t create or open its messages file, but cancreate a file in the configured directory, it creates a file called “messages.<pid>.<id>”, wherethe “id” is increased if the next message cannot be written to that file again.
1.12.4 Turning on Debugging Information

The debugging sections describe recommended debugging tools available in Altair Grid En-gine, including scheduler profiling and logfiles.
Activating Scheduler Profiling

The Altair Grid Engine profiling functionality is used during the development of the softwareto analyze the performance of the scheduler component. Also in customer environmentsthe profiling can be used to detect issues in the setup of the cluster.
With the profiling module enabled in the scheduler component, profiling is running asa thread within the sge_qmaster process and will print additional log messages to themessage file of the master component. The message file can be found in the directory
$SGE_ROOT/$SGE_CELL/spool/qmaster/

Each line in the output is introduced by the following:
• time when the output was made,
• the name of the thread that caused the logging,
• the hostname on which the component is running,
• a letter that shows what kind of logging message was printed (P for profiling)
• and the logging message itself:
05/13/2011 08:42:07|schedu|host1|P|PROF: . . .

The line above shows profiling output (P) of the scheduler thread that was running on host
host1. Profiling messages themselves will start with either PROF: or PROF(<timestamp>):.
For simplicity, the prefixed text of each line has been skipped in the following sample out-put:
01 PROF: sge_mirror processed 5 events in 0.000 s
02 PROF: static urgency took 0.000 s
03 PROF: job ticket calculation: init: 0.030 s, pass 0: 0.030 s, pass 1: 0.000,
04 pass2: 0.000, calc: 0.010 s
05 PROF: job ticket calculation: init: 0.000 s, pass 0: 0.000 s, pass 1: 0.000,
06 pass2: 0.000, calc: 0.000 s
07 PROF: normalizing job tickets took 0.010 s
08 PROF: create active job orders: 0.010 s
09 PROF: job-order calculation took 0.090 s
10 PROF: job sorting took 0.090 s
11 PROF: job dispatching took 0.000 s (20 fast, 0 fast_soft, 0 pe, 0 pe_soft, 0 res)
12 PROF: parallel matching global rqs cqstatic hstatic

Grid Engine Administrator’s Guide v 8.7.0 105

1 Navigating and Understanding

13 qstatic hdynamic qdyn
14 PROF: sequential matching global rqs cqstatic hstatic
15 qstatic hdynamic qdyn
16 PROF: parallel matching 0 0 0 0
17 0 0 0
18 PROF: sequential matching 20 0 20 20
19 20 20 20
20 PROF: create pending job orders: 0.050 s
21 PROF: scheduled in 0.310 (u 0.220 + s 0.000 = 0.220): 20 sequential, 0 parallel,
22 11799 orders, 3 H, 0 Q, 2 QA, 11775 J(qw), 20 J(r), 0 J(s), 0 J(h), 0 J(e),
23 0 J(x), 11795 J(all), 52 C, 1 ACL, 1 PE, 1 U, 1 D, 1 PRJ, 0 ST, 1 CKPT, 0 RU,
24 1 gMes, 0 jMes, 11799/4 pre-send, 0/0/0 pe-alg
25 PROF: send orders and cleanup took: 0.090 (u 0.080,s 0.000) s
26 PROF: schedd run took: 0.720 s (init: 0.000 s, copy: 0.200 s, run:0.490, free:
27 0.000 s, jobs: 10929, categories: 1/0)

The text box above shows the profiling output of one scheduler run.
• Line 1: At the beginning, the scheduler thread receives events containing all informa-tion about configuration and state changes since the last event package was received.This line shows how many events the scheduler received and how long it took to up-date scheduler internal data structures according the instructions in the events.• Line 2: Shows the time needed to calculate the numbers for the urgency policy.• Line 3: The output contains different calculation times for the ticket policy. init showshow long it took to set up all internal data structures. Pass 0 to pass 2 show time fordata preparation steps, and calc shows the time for the final ticket calculation of allpending jobs.• Line 4: Same as in line 3 but for running jobs.• Line 5: Shows the time needed to normalize the tickets so that they are in a rangebetween 0 and 1.• Line 6: Here, orders for running jobs are generated and sent to other threads execut-ing those orders. The time does not include processing of those orders.• Line 7: Overall time needed (including all times from 2 to 6) to compute the priority ofall jobs.• Line 8: Jobs need to be sorted to reflect the job priority. This shows the length of timethat this sorting took.• Line 9: Now the scheduler can start to dispatch jobs to needed compute resources.The time for this step is shown along with how many jobs of each category could bescheduled. The scheduler distinguishes between:

– fast jobs (sequential jobs without soft resource requests)
– fast_soft jobs (sequential jobs with soft resource requests)
– pe jobs
– pe_soft jobs (parallel jobs with soft resource requests)
– res jobs (jobs with reservations)

• Line 10-13: Show for how many jobs the different parts of the scheduler algorithmwere passed.• Line 14: Time needed to create priority update orders for all pending jobs.

Grid Engine Administrator’s Guide v 8.7.0 106

1 Navigating and Understanding

• Line 15-17: Time (wallclock, system and user time) needed to schedule all jobs includ-ing all previous steps except for step 1.• Line 18: The scheduler already sent orders during the scheduling run. This line showshow long it took to send orders that could not be sent during the scheduler processing,and the time also includes cleanup time to remove data structures that are no longerneeded.• Line 19: The time needed for the whole scheduling run including all previous steps.
– init - initialization time
– copy - time to replicate and filter data for the scheduler processing
– run - scheduler algorithm
– free - time to free previously allocated data
– jobs - number of jobs in the system (before copy operation)
– categories 1 - number of categories
– categories 2 - number of priority classes

The scheduler also dumps system user and wall-clock times of each processing layer.
01 PROF(1664087824): scheduler thread profiling summary:
02 PROF(1664087824): other : wc = 55.870s, utime = 0.000s, stime =
03 6.050s, utilization = 11%
04 PROF(1664087824): packing : wc = 0.000s, utime = 0.000s, stime =
05 0.000s, utilization = 0%
06 PROF(1664087824): eventclient : wc = 0.000s, utime = 0.000s, stime =
07 0.000s, utilization = 0%
08 PROF(1664087824): mirror : wc = 0.020s, utime = 0.000s, stime =
09 0.040s, utilization = 200%
10 PROF(1664087824): gdi : wc = 0.000s, utime = 0.000s, stime =
11 0.000s, utilization = 0%
12 PROF(1664087824): ht-resize : wc = 0.000s, utime = 0.000s, stime =
13 0.000s, utilization = 0%
14 PROF(1664087824): scheduler : wc = 0.910s, utime = 0.340s, stime =
15 0.040s, utilization = 42%
16 PROF(1664087824): pending ticket : wc = 0.130s, utime = 0.000s, stime =
17 0.000s, utilization = 0%
18 PROF(1664087824): job sorting : wc = 0.110s, utime = 0.120s, stime =
19 0.020s, utilization = 127%
20 PROF(1664087824): job dispatching: wc = 0.000s, utime = 0.000s, stime =
21 0.000s, utilization = 0%
22 PROF(1664087824): send orders : wc = 0.380s, utime = 0.360s, stime =
23 0.050s, utilization = 108%
24 PROF(1664087824): scheduler event: wc = 0.180s, utime = 0.110s, stime =
25 0.010s, utilization = 67%
26 PROF(1664087824): copy lists : wc = 1.270s, utime = 0.260s, stime =
27 0.440s, utilization = 55%
28 PROF(1664087824): total : wc = 60.340s, utime = 2.070s, stime =
29 6.790s, utilization = 15%

Activating Scheduler Monitoring

Grid Engine Administrator’s Guide v 8.7.0 107

1 Navigating and Understanding

There are different ways to monitor the scheduler and the decisions it makes. Profiling thatshows the main activity steps and corresponding run times can be enabled as outlined inthe previous chapter. Besides that, administrators can also enable additional monitoring.The monitoring output can be used to find out why certain scheduler decisions were made,and why specific jobs were not started. Note that enabling additional monitoring mightthrottle down the scheduler and therefore the cluster throughput.
Find Reasons Why Jobs Are Not Started

The scheduler can collect the reasons why jobs could not be scheduled during a schedulerrun. The parameter schedd_job_info of the scheduler configuration enables or disablesthis functionality. If it is enabled, messages containing the reasons why it was not possi-ble to schedule a job will be collected for the not-scheduled jobs. The amount of memorythat might be needed to store that information within the sge_qmaster process could beimmense. Due to this reason, this scheduler job information is disabled by default.
If it is enabled, qstat can be used to retrieve that information for a specific job:
qstat -j <jid>
scheduling info: queue instance "all.q@host1" dropped because it is overloaded:

queue instance "all.q@host1" dropped because it is disabled
All queues dropped because of overload or full
Job is in hold state

Enable Monitoring to Observe Scheduler Decisions

Especially when resource or advance reservations are used in a cluster it might be helpfulto understand how the scheduler is influenced by the existing reservations. For thispurpose, the scheduler configuration parameter setting MONITOR can be enabled. Thiscauses the scheduler to add information to the schedule file that is located in the direc-tory $SGE_ROOT/$SGE_CELL/common/. The following example briefly introduces schedulermonitoring.
Assume the following sequence of jobs:
qsub -N L4_RR -R y -l h_rt=30,license=4 -p 100 $SGE_ROOT/examples/jobs/sleeper.sh 20
qsub -N L5_RR -R y -l h_rt=30,license=5 $SGE_ROOT/examples/jobs/sleeper.sh 20
qsub -N L1_RR -R y -l h_rt=31,license=1 $SGE_ROOT/examples/jobs/sleeper.sh 20

These jobs are being submitted into a cluster with the global license consumable resourcethat has been limited to a number of 5 licenses. Due to the use of these default prioritysettings in the scheduler configuration:
weight_priority 1.000000
weight_urgency 0.100000
weight_ticket 0.010000

the -p priority of the L4_RR job will be sure to overwhelm the license-based urgency, finallyresulting in a prioritization such as the following:

Grid Engine Administrator’s Guide v 8.7.0 108

1 Navigating and Understanding

job-ID prior name

3127 1.08000 L4_RR
3128 0.10500 L5_RR
3129 0.00500 L1_RR

In this case, traces of those jobs can be found in the schedule file for 6 schedule intervals:
::::::::
3127:1:STARTING:1077903416:30:G:global:license:4.000000
3127:1:STARTING:1077903416:30:Q:all.q@host3:slots:1.000000
3128:1:RESERVING:1077903446:30:G:global:license:5.000000
3128:1:RESERVING:1077903446:30:Q:all.q@host2:slots:1.000000
3129:1:RESERVING:1077903476:31:G:global:license:1.000000
3129:1:RESERVING:1077903476:31:Q:all.q@host1:slots:1.000000
::::::::
3127:1:RUNNING:1077903416:30:G:global:license:4.000000
3127:1:RUNNING:1077903416:30:Q:all.q@host3:slots:1.000000
3128:1:RESERVING:1077903446:30:G:global:license:5.000000
3128:1:RESERVING:1077903446:30:Q:all.q@host1:slots:1.000000
3129:1:RESERVING:1077903476:31:G:global:license:1.000000
3129:1:RESERVING:1077903476:31:Q:all.q@host1:slots:1.000000
::::::::
3128:1:STARTING:1077903448:30:G:global:license:5.000000
3128:1:STARTING:1077903448:30:Q:all.q@host3:slots:1.000000
3129:1:RESERVING:1077903478:31:G:global:license:1.000000
3129:1:RESERVING:1077903478:31:Q:all.q@host2:slots:1.000000
::::::::
3128:1:RUNNING:1077903448:30:G:global:license:5.000000
3128:1:RUNNING:1077903448:30:Q:all.q@host3:slots:1.000000
3129:1:RESERVING:1077903478:31:G:global:license:1.000000
3129:1:RESERVING:1077903478:31:Q:all.q@host1:slots:1.000000
::::::::
3129:1:STARTING:1077903480:31:G:global:license:1.000000
3129:1:STARTING:1077903480:31:Q:all.q@host3:slots:1.000000
::::::::
3129:1:RUNNING:1077903480:31:G:global:license:1.000000
3129:1:RUNNING:1077903480:31:Q:all.q@host3:slots:1.000000
::::::::

For a schedule interval, each section shows all resource utilizations that were taken intoaccount. The RUNNING entries show utilization by jobs that already were running at thebeginning of the interval, STARTING entries show immediate utilization that was scheduledwithin the interval, and RESERVING entries show utilization that is planned for the futurei.e. reservations.
The format of the schedule file is

• jobid: The jobs id.
Grid Engine Administrator’s Guide v 8.7.0 109

1 Navigating and Understanding

• taskid: The array task ID or 1 for non-array jobs.• state: One of RUNNING/SUSPENDED/MIGRATING/STARTING/RESERVING.• start_time: Start time in seconds after 1.1.1970.• duration: Assumed job duration in seconds.• level_char: One of P,G,H and Q standing for PE, Global ,Host and Queue.• object_name: The name of the PE/global/host/queue.• resource_name: The name of the consumable resource.• utilization: The resource utilization debited for the job.
A line “::::::::” marks the beginning of a new schedule interval.
Activating Debugging Output from the Command Line and Interpreting Output

To activate debugging output of Altair Grid Engine applications, do the following beforestarting the application to be tested:
. $SGE_ROOT/$SGE_CELL/common/settings.sh
. $SGE_ROOT/util/dl.sh
dl <debug_level>
<uge_command>

On Windows, it is:
> %SGE_ROOT%\%SGE_CELL%\common\settings.bat
> %SGE_ROOT%\util\dl.bat <debug_level>
> <uge_command>

The dl.sh script makes the dl command available. The dl command will set necessary en-vironment variables for a specific debug level. If the Altair Grid Engine command is started,then it will print debugmessages to stderr. In debug_level 1, the applications print general in-formationmessages aboutwhat steps are executed. debug_level 2will show function calls ofthe upper processing layers and corresponding locations in the source code that are passed.Other debug_levels are available, but are not recommended for users or administrators.
Here is an example for the output of the qstat command in debug_level 1:
01 0 17230 140106943756032 returning port value: 5001
02 1 17230 main creating qstat GDI handle
03 2 17230 main file "/Users/ernst/Test/5000/default/
04 common/sge_qstat" does not exist
05 3 17230 main file "/Users/ernst/.sge_qstat" does not exist
06 4 17230 main queues not needed
07 5 17230 main sge_set_auth_info: username(uid) = user1(500),
08 groupname = univa(1025)
09 6 17230 main ------- selecting queues -----------
10 7 17230 main ------- selecting jobs -----------
11 8 17230 main Destroy handler

Grid Engine Administrator’s Guide v 8.7.0 110

1 Navigating and Understanding

The first column in the output shows a line number followed by the PID of the process thatis being debugged. The third column will show either an internal thread id or the threadname of the thread that logs the message. After that, the debug message is printed.
Activating Debugging Output of Altair Grid Engine Windows services
To activate debugging output of the Altair Grid EngineWindows services \GEFullName{} Job
Starter Service and \GEFullName{} Starter Service and the associated SGE_Starter.exebinary, follow these steps:

• At the Windows execution host, open the Services dialog from the Control Panel asan Administrator.• Open the Properties dialog of the Altair Grid Engine Windows service.• Stop the service.• Enter “/log” to the Start parameters: text field.• Start the service using the Start button on this dialog.
From now on, the service writes a log file to c:\tmp. If logging was enabled for the
\GEFullName{} Job Starter Service, additionally the SGE_Starter.exe starts writing a logfile for each time it is started.
Activating Debugging Output from qloadsensor.exe

If the Windows execution host does not report load, it could be because qloadsensor.exedoes not work properly. First check the Windows Task Manager to see whether qloadsen-sor.exe runs at all. If it runs and the execution daemon does not report load after morethan one minute, test qloadsensor.exe itself. To do this, stop the execution daemon using
> qconf -ke <hostname>

and check the Windows Task Manager to make sure neither the Windows execution dae-mon sge_execd.exe nor the load sensor qloadsensor.exe are running anymore.
To test qloadsensor.exe, open a console window (also called cmd.exe window) asthe user that starts the Windows execution daemon. In this console window, run the
$SGE_ROOT/$SGE_CELL/common/settings.bat file to set the environment variables properly.Then start the load sensor manually:
> %SGE_ROOT%\bin\win-x86\qloadsensor.exe

Press Enter two times and wait several seconds. The load sensor should print an outputlike this:
begin
wega:num_proc:1
wega:load_short:0.010
wega:load_medium:0.010
wega:load_long:0.010
wega:load_avg:0.010
wega:cpu:0

Grid Engine Administrator’s Guide v 8.7.0 111

2 Licensing - Summary concerning licensing of Altair Grid Engine

wega:swap_free:1113124864
wega:swap_total:1308422144
wega:swap_used:195297280
wega:mem_free:279228416
wega:mem_total:536330240
wega:mem_used:257101824
wega:virtual_free:1392353280
wega:virtual_total:1844752384
wega:virtual_used:452399104
end

If it does not look like this or if the “load_*” values are always 0, enable debugging:
> %SGE_ROOT%\bin\win-x86\qloadsensor.exe -set-trace-file c:\tmp\qloadsensor.trace

Again, press Enter at least two times and wait several seconds. Now the log file
c:\tmp\qloadsensor.trace should contain the program flow and possibly also errormessages.

2 Licensing - Summary concerning licensing of Altair Grid
Engine

2.1 General Overview

Altair Grid Engine 8.7.0 introduces a license mechanism allowing fine grained resource us-age reporting which is linked to the Altair license services. License consumption informa-tion is available during the runtime of the main cluster component (sge_qmaster) for thecurrent point in time and also for the past to the beginning where Altair Grid Engine 8.7.0was installed or where an upgrade to that version was made.
The new license consumption reporting allows the usage of Altair network licenses main-tained by the Altair licensing server. Altair Grid Engine consumes a certain amount of fea-ture licenses dependent on the number of CPUs and GPUs available in the cluster.
The licensing functionality is implemented in all Altair Grid Engine components. Executiondaemons (sge_execd) report resource availability and/or consumption. The information iscollected in Altair Grid Engine’s main component (sge_qmaster) and available for clustermanagers via client commands (qconf, qstat, qhost).
Altair Grid Engine does check for license violations at regular time intervals every 90 secondsand the system sends notifications when license violations occur and provides actions tosolve those violations.
2.2 Licensed Resources

Altair Grid Engine uses visible and usable CPU cores and GPUs that may be used for com-putational work in a cluster for license considerations. The availability of such resourcesconsumes a corresponding entitlement of a Altair Grid Engine license.
Grid Engine Administrator’s Guide v 8.7.0 112

2 Licensing - Summary concerning licensing of Altair Grid Engine

The total available amount of CPU cores and GPUs is reported by each compute node asstatic load values with the name m_core and m_gpu. Static means that the reported re-source consumes license entitlements beginning with installation until an execution nodeis uninstalled. When a compute node is not available (e.g during maintenance times) theAltair Grid Engine system will use the last reported values of m_core and m_gpu for licenseconsiderations unless all queues residing on that host are disabled manually by a managerof the cluster.
Reportedm_core andm_gpu values might change during the lifetime of an execution node,when CPU sockets and/or GPUs are added, replaced or removed. In that case the changecan be detected as soon as the corresponding execution daemon (see sge_execd(8))reconnects to the main cluster component component (see sge_qmaster(8)) when thefirst load report is sent. Changes in reported resource counts will be detected approxi-mately 120 seconds after the execution daemon is restarted or within the configured loadreport time plus 120 seconds (see load_report_interval in sge_conf(5)) during runtime ofa sge_execd. Reported load values can be made visible with different client commands(see qstat(1)/qhost(1) -F or qconf(1) -se <hostname>). A resource usage check can also bemanually triggered by using the qconf -tlv command.
The sge_qmaster process collects the load values of all execution nodes and accumulatesthe license count that will then be visible in form of License Usage Records (see qconf(1)-slur). Usage collected in License Usage Records will also be accumulated and comparedagainst the number of available feature licenses.

2.3 License Usage Records

License Usage Records describe resource consumption and shortage in a cluster over arange of time. The sum of all data sets shows available capacities or licensing violations.
Records are created automatically and they comprise the following descriptive attributes:

• ID: Identifier for one record• start_time and end_time: Each record has a start and end time (visible as 64bit UNIXtimestamp) that shows when and how long resources were reported to be availablein the cluster. Whenever the total amount of resources changes in a cluster a newrecord is created. Usually the end time and start time of consecutive records match.Even in case of cluster downtimes (sge_qmaster(8) is inactive) the time gaps in licenseusage reporting will be closed as long as the downtime does not exceed 24 hours. Ifreported resources of hosts should not be considered during smaller maintenancewindows then queues residing on a host have to be disabled manually and changeshave to be reflected in a new license usage record (automatically created every 15seconds) before cluster components should be shut down.• resource_consumption: Shows consumed resources by a cluster. Directly after qmas-ter installation and before execution nodes are attached the resource_consumptionwillshow the keyword NONE. As soon as execution nodes are installed this attribute willshowone ormultiple resources in the formof name/value pairs separated by commas.The names represent different resources whereas the numbers denote the total num-ber of corresponding resource items available in the cluster. The following resourcesmight be reported:

Grid Engine Administrator’s Guide v 8.7.0 113

2 Licensing - Summary concerning licensing of Altair Grid Engine

• m_core_l, m_core_r, m_gpu_l, m_gpu_r: Machine cores on premises (local), machinecores in the cloud (remote), GPUs on premises (local), GPUs in the cloud (remote).Reported cores and GPUs are considered to be remote if hosts objects or hostconfigurations are correspondingly tagged. Find more information below how to taghosts.• resource_shortage: This attribute will show the keyword NONE as long as the installedlicense covers all available resources in a cluster. Otherwise it will show a comma sepa-rated list of name/value pairs of those resources that are not covered by the installed li-cense file. The same resourcesmight be reported as with the resource_consumption at-tribute. Also with volume based licenses the shown numbers always represent the to-tal amount or resources. The gap in volume can be calculated by: (end_time - start_time)* value.• licenses_required: Shows the number of Altair feature licenses required for the currentavailable resources in a cluster. One machine CPU core will consume 10 licenses, aGPU will consume 100 licenses.• licenses_checked_out: Shows the number of Altair feature licenses checked out fromthe licensing server for the currently available resources in a cluster.• info: Shows information about special states or occurrences of the licensing system.If everything is working as it should, this field is shows the cluster to be licensed.
2.4 Licensing Actions

Altair Grid Engine triggers specific actions when certain alarm levels are reached. Thereare four distinct alarm levels, namely info, warning, error and alert. Otherwise, Altair GridEngine operates without any alarm level triggered when licensing is working without anyproblems.
Here is the description of actions that are taken by the Altair Grid Enginemaster componentwhen an alarm level is reached.

• info: The info level informs about important, successful licensing events and is usedprimarily for debugging purposes. An info message is logged to Altair Grid Engine log-ging facility every 6 hours only if info messages are enabled there. No email messageis sent.• warning: The warning level occurs, when the licensing server reports a warning. Thisis usually the case, when the license file is about to expire. A warning message islogged to the Altair Grid Engine logging facility every 3 hours. An email is sent to thecluster administrator every 12 hours describing the warning as well.• error: The error level occurs, when Altair Grid Engine was not able to acquire all licens-ing entitlements from the licensing server which are required to license all resourcesin the cluster. An errormessage is logged to the Altair Grid Engine logging facility every20 minutes. Additionally, an email is sent to the cluster administrator every 3 hoursdescribing the error.• alert: The alert level is themost severe licensing alarm. It occurs, when the connectionto the licensing server is lost. An error message is logged to the Altair Grid Enginelogging facility every 10 minutes. An email is sent to the administrator of the clusterevery hour describing the alert.
If the error or alert level was triggered and the last successful license validation is older than
Grid Engine Administrator’s Guide v 8.7.0 114

2 Licensing - Summary concerning licensing of Altair Grid Engine

2 days, all hosts will enter the unlicensed state. Messages and emails are logged or sent asdescribed above. There are no further restrictions in this mode. When strict licensingmodeis enabled, no new jobs are accepted anymore. This means that any command or API callthat attempts to add new jobs to the cluster will fail and existing pending jobs in the clusterwill not get started. Strict licensing mode is disabled by default and can only be enabled bya configuration parameter for qmaster. Currently, it is not recommended to enable strictlicensing mode.
Jobs already running can always continue to run.

2.5 Licensing Algorithm

The licensing algorithm is the instance in sge_qmaster responsible to report license viola-tions and trigger corresponding actions. Depending on the severeness of the alarm levelwhich the algorithm detects, it will:
• Cause logging messages to be written to the message file of qmaster• Send emails to the admin and configured users, containing information about thelicense violations• Set execution host queues to unlicensed state

If the strict licensing mode is enabled, the algorithm will additionally
• Disable unlicensed resources• Disallow submission of new jobs

The strict licensing mode is disabled by default and can only be enabled by a configurationparameter for qmaster.
On startup, the algorithm attempts to license all currently available resources in the clusterby checking out all required feature licenses. If not enough features licenses are available,the algorithm will get as many feature licenses as possible. If this operation fails, an initialgrace period of 90 minutes will be granted. Within the initial grace period, the cluster con-tinues to work normally but error messages and emails will be generated or sent. If thisperiod expires without successfully checking out all feature licenses required, unlicensedhosts will be set to unlicensed state (L-state). In strict licensing mode, it will not be possibleto submit new jobs to those hosts and pending jobs cannot start on hosts in the unlicensedstate. When all required feature licenses are checked out successfully, the cluster will startor continue to operate normally.
If an error or alert alarm level occurs, e.g. when the licensing server becomes unreachableor the license is expired, a grace period of 2 days is granted. Within this period, all clusterresources continue towork normally apart from errormessages generated and emails sent.Note that any occurance of a grace period will be logged in the License Usage Records. Ifthis period expires without a successful feature license checkout, all hosts will enter theunlicensed state and submission of new jobs will not be possible anymore in strict licensingmode.
The licensing algorithm will perform the following operations as a sequence:
Grid Engine Administrator’s Guide v 8.7.0 115

2 Licensing - Summary concerning licensing of Altair Grid Engine

• Accumulate all resources (m_gpu and m_core) for active hosts that cause license con-sumption (not in L or d-state).
• Calculate the feature license costs for those resources. One core requires 10, one GPUrequires 100 feature licenses.
• Checkout the number of calculated feature licenses from the Altair licensing serverand handle eventual errors.
• Check the state of the connection to the licensing server. Also, check for warningswhich usually occur when the license is about to expire.
• Collect all alert levels and messages which may have occurred
• Check license usage. For every execution host, check if enough feature licenses areavailable. If enough licenses are available for the current host, keep the host enabledor re-enable the host, if it was in the unlicensed state. Otherwise, if there are notenough licenses remaining, set or keep the unlicensed state of the host. Sum up thecore and GPU resources of all hosts in the unlicensed state and save the values for thelicense resource shortage attribute, which is assigned to the License Usage Record inthe next step.
• Update the license usage record. If any value of the License Usage Record haschanged (see License Usage Record section), add a new entry to the list of LicenseUsage Records.
• Handle any alert level and message, which may have occurred during the previoussteps. Log an automated message to the Altair Grid Engine logging facility and sendan email, if required.

This license verification algorithm will run once every minute. Note that you can triggera manual verification run using the qconf -tlv command at any given time e.g. after anexecution host was added to the cluster.
2.6 Requirements

There are a couple of requirements that need to be fulfilled so that the licensing function-ality of Altair Grid Engine can work properly:
• A working Altair License Management System installation with a proper license forthe Altair Grid Engine cluster has to be up and running. The licensing server has to beintroduced to the running instance of Altair Grid Engine by setting the proper qmas-ter configuration parameter named AGE_LICENSE_PATH.When installing the Qmastercomponent of Altair Grid Engine via the installation script, a dialogue will ask for theAGE_LICENSE_PATH aswell. See the Altair Grid Engine InstallationGuide and the “AltairLicenseManagement System Installation and Operations Guide” for further details onhow to setup the Altair License Managment System.
• The execution daemons providing GPU information need to be able to query thosedevices. Access to GPU resources for jobs requires a working CUDA installation, andthe CUDA shared runtime library or CUDA shared driver library needs to be loadable.See the CUDA Installation Guide provided by NVIDIA for further details.

Grid Engine Administrator’s Guide v 8.7.0 116

2 Licensing - Summary concerning licensing of Altair Grid Engine

• A user-specified path to the CUDA runtime or driver library can be declared by setting
SGE_CUDA_RUNTIME_LIB_PATH or SGE_CUDA_DRIVER_LIB_PATH as execd_params.See manual page sge_conf(5) for more information.

• If CUDA is not available on the system, pcilib is used to find matching PCI devices,where the vendor id resolves to NVIDIA and the PCI device class is a 3D, XGA or VGAcontroller. Each of these devices is then reported as one GPU unit. Querying for PCIdevices is available on Linux systems only. The pcilib dynamic library is a standardcomponent on Linux systems.
• If Altair Grid Engine cannot find any of the libraries above, zero GPU resources will bereported to the master component.

2.7 Administrative Commands

2.7.1 Display License Usage Over Time.

In a running cluster license usage will change over time, depending on the installed andactive execution nodes and also depending on the hardware (CPU, GPU) installed on thosemachines.
License usage is collected over time and license usage records will be automatically created.Such license records can be shown with the command qconf -slur. Find more informationconcerning license usage records in the corresponding section above.
2.7.2 Trigger License Verification Manually

A license verification run can be triggered manually at any given time using the qconf -tlvcommand.
2.7.3 Enforce Reporting of Cloud Resources

Altair Grid Engine distinguishes between resources that are reported to be on premises orin the cloud. Depending on how the cluster is installed manual steps might be required totag resources as cloud resources before they are recognized as such.
Reported cores or GPUs of a host are handled as cloud resources when one of the followingconditions is met:

• The Altair Grid Engine Installation Guid host object contains in the complex_values thedefinition of a boolean complex named tortuga that is set to true. (This may requireto create the boolean complex tortuga before use).
• The host configuration objects contains an execd_param where a host_provider pa-rameter is set to a character sequence.

Grid Engine Administrator’s Guide v 8.7.0 117

3 Special Activities

2.7.4 Transfer License Usage Information between Clusters

For use cases that require cloud-based compute clusters for a limited time, it is possible touse a volume-based license and keep the remaining and unused compute capacity of sucha license for future use, where again a new cloud cluster can be set up to consume someor all of the remaining volume of that license.
This is achieved by transferring cluster usage information from one cloud installation toanother with the help of the following script:
$SGE_ROOT/util/upgrade_modules/sge_transfer_usage_information.sh
2.7.5 Disabling License Consumption for Specific Hosts and/or Resources

In case execution nodes fulfill a special role in a cluster (e.g. where only transfer-queues areresiding or when those hosts are used just to feed load information in a cluster) then thereportedm_code andm_gpu values of such a node should not consume license entitlements.Also, in some situations, not all GPUs available on a system are appointed to consumefeature licenses e.g. an integrated GPU in a CPU, which is not used.
Customers having such use cases should contact our Support organization to get instruc-tions how to disable resource reporting.
2.7.6 AGERest interface

The AGERest interface allows to access information about license usage records.

3 Special Activities

3.1 Tuning Altair Grid Engine for High Throughput

In clusters with high throughput, there is usually a high volume of short jobs (job run timesin the magnitude of seconds).
Both the submission rate as well as the number of jobs finishing in a certain time frame ishigh; there may also be a high number of pending jobs.
Cluster sizes range fromsmall clusterswith only a fewhosts to large clusterswith thousandsof hosts.
A number of setup and tuning parameters can help in achieving high throughput and highcluster utilization in such high-throughput scenarios.
3.1.1 sge_qmaster Tuning

Installation Options
Altair Grid Engine 8.2 allows activation of a read-only component during installation. If en-abled this component will handle all read-only requests in parallel with read-write requests.
Grid Engine Administrator’s Guide v 8.7.0 118

3 Special Activities

Up to 64 threads can be enabled in this component. Enabling this ensures faster responsetimes for all requests, which also has a huge positive impact on the cluster throughput.
It is recommended to enable this component during the installation so that it starts at least4 threads. If memory constraints allow starting more threads, this will be helpful especiallyin huge clusters with several thousand execution and submit hosts. Find more informationconcerning read-only threads andmemory requirements in section ‘Selecting Thread Setupof the Master Host Component’ in the installation guide.
If the read-only component was disabled during the Altair Grid Engine installation process,it can be manually enabled by adjusting the reader parameter located in the bootstrap fileof the configuration. Adjusting this parameter requires restart of the sge_qmaster process.
During the runtime of an instance of sge_qmaster with an enabled read-only component itis possible to add or kill reader threads with the qconf -at reader and qconf -kt readercommands. Increasing the number of reader threads will be helpful for the Altair GridEngine system when the number of incoming read-only requests cannot be handled im-mediately by the active number of threads. In this case waiting requests are added to an
sge_qmaster internal queue. The length of the queue will be shown in the logging outputof qmaster monitoring when this is enabled by setting the MONITOR_TIME parameter in the
qmaster_params of the global configuration.
03/20/2014 11:36:40.910387| listener|v06|P|listener001: runs: 0.25r/s (

in (g:204.25,a:0.00,e:0.00,r:0.00)/s other (wql:0,rql:10,wrql:0))
out: 0.00m/s APT: 0.0000s/m idle: 100.00% wait: 0.00% time: 3.97s

The rql parameter in the other section of the monitoring output shows the reader queuelength. In this example the queue length is 10 which means that 10 additional threadswould be required to handle all read-only requests immediately.
It is recommended to observe the cluster over a longer time to discover the optimal numberof read-only threads that should be started. Just increasing the number of read-only threadsto themaximumof 64 is not beneficial because internal lockingmight slowdownprocessingin situations of lesser load.
Spooling Options

In high-throughput scenarios, performance of the cluster is highly dependent on the spool-ing done by sge_qmaster. Every job submission, job status transition, and finally job end,result in spooling operations.
Therefore the sge_qmaster spooling options should be carefully chosen:

• Use LMDB spooling if possible.
• Do spooling on a local file system, unless high availability using sge_shadow is re-quired; see Ensuring High Availability.
• If spooling needs to be on a shared file system, LMDB spooling on NFS4 is preferredover classic spooling.

Choosing the spooling method is usually done during Altair Grid Engine installation.
Grid Engine Administrator’s Guide v 8.7.0 119

3 Special Activities

For all spooling methods the spooled objects can be compressed before writing them tothe spooling database (for classic spooling, only job and job scripts can be compressed).Compression is enabled by adding the option COMPRESSION=[0..9] to the spooling_paramsin the bootstrap file; see man page bootstrap(5). The compression level can be set from 0(no compression), 1 (little but fastest compression) to 9 (highest but slowest compression).
Compression can help to reduce the storage requirements of the spooling database. Theremay also be positive performance impact, especially with the lower compression levels (1or 2) and when data is stored on a shared file system or in a remote PostgreSQL database.
For testing the impact of different compression levels in an idle cluster, e.g. during mainte-nance:

• set the COMPRESSION option in the bootstrap file• re-start sge_qmaster• disable all queues• submit a high number of jobs and measure the time• optionally check the size of the spooling database• delete all jobs again
E.g. for classic spooling:
In the bootstrap file:
spooling_params <path to common dir>;<path to spool dir>;COMPRESSION=2

As user root:
$SGE_ROOT/default/common/sge_master stop
$SGE_ROOT/default/common/sge_master start

As admin user:
qmod -d "*"
time env SGE_DEBUG_MULTI_SUBMIT=1000 qsub $SGE_ROOT/examples/jobs/sleeper.sh
du -skc $SGE_ROOT/default/spool/qmaster/job*
time qdel "*"

The environment variable SGE_DEBUG_MULTI_SUBMIT is meant for testing and debugging - donot use it in a production environment!
Configuration Options
The following options in the global cluster configuration can have a significant impact onsge_qmaster performance. Changing these parameters takes immediate effect.

• The attribute loglevel defines howmuch information is logged to the sge_qmastermes-sages file during sge_qmaster runtime. If loglevel is set to log_info, messages will getlogged at every job submission and job termination. Set loglevel to log_warning to re-duce overhead from writing the sge_qmaster messages file.
Grid Engine Administrator’s Guide v 8.7.0 120

3 Special Activities

• Do the following configuration for the attribute reporting_params:
– Make sure to write operations on the accounting file and optionally if the report-ing files are buffered. The parameter flush_time should be set to at least onesecond (00:00:01). If it is set to 0, buffering of write operations to the accountingand the reporting file is not done. Should the attribute accounting_flush_time beset, it must either be removed (meaning that flush_time will be in effect for theaccounting file) or set to at least one second (00:00:01).
– If reporting is enabled, the log_consumables attribute must be set to false.
log_consumable is an option ensuring compatibility to a (mis)behavior in SunGrid Engine < 6.2. Setting it to true results in a high volume of data written to thereporting file whenever a consumable value changes. It should always be set to
false.

See Understanding and Modifying the Cluster Configuration for more details on the globalcluster configuration.
3.1.2 Tuning Scheduler Performance

An important factor in high-throughput scenarios is scheduler performance. Reducing thetime required for a single scheduling run will allow for more precise scheduling runs.
The scheduler configuration allows for the setting of attributes having significant impact onscheduler performance.

• Setting the attribute flush_submit_sec to 1 triggers a scheduling run whenever a job issubmitted. If there are free resources in the cluster, the newly submitted job can bestarted immediately.
• The attribute flush_finish_sec has a similar meaning. When its value is set to 1, ascheduling run is triggered whenever a job finishes. The resources having been heldby the just finished job can get reused immediately.
• The default configuration of Altair Grid Engine makes the scheduler dispatch jobs tothe least-loaded host; this also adds some virtual load to a host when a job gets dis-patched to it. Adding virtual load to a host requires sorting the host list after every dis-patch operation, which can be an expensive operation in large clusters. By setting theattribute load_adjustment to NONE scheduling overhead can be reduced significantly.
• When the schedd_job_info attribute is set to true the scheduler provides informa-tion about why a job cannot be dispatched to sge_qmaster. This information canbe queried by calling qstat -j <job_id>. Setting schedd_job_info to false signifi-cantly reduces the amount of information generated by the scheduler and held bysge_qmaster, lowering the amount of memory required by sge_qmaster and theoverhead of producing the information. Querying the reason why a job cannot bedispatched is then accomplished by calling qalter -w p <job_id>.
• Resource reservation results in quite expensive analysis being done by the scheduler.If resource reservation is not required, consider disabling it completely by setting theattributemax_reservation to 0.

Grid Engine Administrator’s Guide v 8.7.0 121

3 Special Activities

SeeUnderstanding andModifying the Altair Grid Engine Scheduler Configuration for furtherinformation about scheduler configuration.
In general, the fewer the scheduling policies configured, the higher the scheduler perfor-mance.
3.1.3 Reducing Overhead on the Execution Side

Local sge_execd Spooling

In high-throughput scenarioswith short-running jobs, many jobs are started and completedper time period. Some of the most expensive operations at job start and end are job spool-ing and the creation of temporary files and directories for the job start, and the cleaning oftemporary data at job end.
By configuring the execution daemons to use a local file system for spooling, performancecan be significantly improved.
For changing the sge_execd spool directory

• make sure no jobs are running on the hosts affected,
• modify the global cluster configuration or the local cluster configuration for the exechost,
• set the attribute execd_spool_dir to the new spool directory,
• shut down and restart the sge_execd.

Setting Execution Hosts to Use Extended Memory Data Metrics

The default memory collection metrics in Altair Grid Engine can be extended on modernLinux operating systems to include additional memory metrics added to Kernel 2.6.25 orlater. The ENABLE_MEM_DETAILS execd parameter flag can be set in the global cluster config-uration using qconf -sconf. When ENABLE_MEM_DETAILS is set to 1 or TRUE Altair Grid Enginewill collect additional per-job memory usage for resident set size (rss), proportional set size(pss), shared memory (smem) and private memory (pmem).

3.2 Optimizing Utilization

Cluster utilization describes the proportion of resources currently used by Altair Grid Enginejobs in comparison to the whole amount of available resources installed at the computecluster. Reaching high cluster utilization is one of the main goals which Altair Grid Enginehas on its agenda. This section describes basic techniques for optimizing the resource uti-lization of an Altair Grid Engine managed cluster.

Grid Engine Administrator’s Guide v 8.7.0 122

3 Special Activities

3.2.1 Using Load Reporting to Determine Bottlenecks and Free Capacity

In order to provide a quick overview about the cluster’s compute resources state, the
qhost command can be used. Interesting values are the current load value (LOAD) and theamount of memory currently in use (MEMUSE).

> qhost
HOSTNAME ARCH NCPU NSOC NCOR NTHR LOAD MEMTOT MEMUSE SWAPTO SWAPUS
--
global - - - - - - - - - -
host1 lx-amd64 1 1 1 1 0.21 934.9M 147.7M 1004.0M 0.0
host2 lx-x86 1 0 0 0 0.09 1011.3M 103.4M 1.9G 0.0
host3 lx-amd64 2 1 2 2 0.46 3.4G 343.3M 2.0G 0.0
host4 sol-amd64 2 1 2 2 2.07 2.0G 763.0M 511.0M 0.0
host5 lx-amd64 1 1 1 1 0.09 492.7M 75.3M 398.0M

Unused hosts can be identified through a low load value. To sort the output by load, usestandard commands like the following:
> qhost | tail +4 | sort -k 7
host2 lx-x86 1 0 0 0 0.13 1011.3M 103.4M 1.9G 0.0
host5 lx-amd64 1 1 1 1 0.14 492.7M 75.3M 398.0M 0.0
host1 lx-amd64 1 1 1 1 0.29 934.9M 147.7M 1004.0M 0.0
host3 lx-amd64 2 1 2 2 0.64 3.4G 343.3M 2.0G 0.0
host4 sol-amd64 2 1 2 2 1.94 2.0G 763.0M 511.0M 0

More detailed load information can be seen at the execution host level. The qconf -se
<hostname> displays the current raw load values.

> qconf -se host3
...
load_values load_avg=0.000000,load_short=0.000000, \

load_medium=0.000000,load_long=0.000000,arch=lx-amd64, \
num_proc=1,mem_free=2818.867188M,swap_free=2053.996094M, \
virtual_free=4872.863281M,mem_total=3144.273438M, \
swap_total=2053.996094M,virtual_total=519\GEShortVersion{}69531M, \
mem_used=325.406250M,swap_used=0.000000M, \
virtual_used=325.406250M,cpu=0.200000,m_topology=SC, \
m_topology_inuse=SC,m_socket=1,m_core=1,m_thread=1, \
np_load_avg=0.000000,np_load_short=0.000000, \
np_load_medium=0.000000,np_load_long=0.000000

...
report_variables NONE

In order to see the processed (when using load scaling) values -h hostname -F can be used:
> qhost -h host6 -F

Grid Engine Administrator’s Guide v 8.7.0 123

3 Special Activities

HOSTNAME ARCH NCPU NSOC NCOR NTHR LOAD MEMTOT MEMUSE SWAPTO SWAPUS

global - - - - - - - - - -
host7 lx-x86 1 0 0 0 0.00 1011.3M 106.5M 1.9G 0.0

hl:arch=lx-x86
hl:num_proc=1.000000
hl:mem_total=1011.332M
hl:swap_total=1.937G
hl:virtual_total=2.925G
hl:load_avg=0.000000
hl:load_short=0.000000
hl:load_medium=0.000000
hl:load_long=0.000000
hl:mem_free=904.812M
hl:swap_free=1.937G
hl:virtual_free=2.821G
hl:mem_used=106.520M
hl:swap_used=0.000
hl:virtual_used=106.520M
hl:cpu=0.000000
hl:m_topology=NONE
hl:m_topology_inuse=NONE
hl:m_socket=0.000000
hl:m_core=0.000000
hl:m_thread=0.000000
hl:np_load_avg=0.000000
hl:np_load_short=0.000000
hl:np_load_medium=0.000000
hl:np_load_long=0.000000

The current cluster utilization should always be examined in conjunction with the pendingjob list. If there are no jobs waiting for resources, the utilization is already perfect from theDRM point of view. The qstat command gives an overview of running and pending jobs.Running jobs are in state r and pending jobs are in state qw (for queued waiting). The timeof submission is visible, depending on job status and the requested number of slots.
> qstat
job-ID prior name user state submit/start at queue slots ja-task-ID
--

6 0.55500 sleep daniel r 04/14/2011 09:45:12 bq@macsuse 1
7 0.55500 sleep daniel r 04/14/2011 09:45:12 bq@macsuse 1
8 0.55500 sleep daniel qw 04/14/2011 09:44:25 1
9 0.55500 sleep daniel qw 04/14/2011 09:44:25 1

More information about why certain jobs are not scheduled can be retrieved via the qstatcommand. A prerequisite for this is that in the scheduler configuration the schedd_job_infoparameter is set to true.

Grid Engine Administrator’s Guide v 8.7.0 124

3 Special Activities

Note that enabling the scheduler output has implications for the overall performance ofthe qmaster process and should be activated either in smaller clusters, where the qmasterhost is just slightly loaded, or only temporarily.

Note

> qconf -msconf
...
schedd_job_info true

When there are any pending jobs the scheduling information can be viewed via a simple
qstat -j <jobno>

> qstat -j <jobno>
...
scheduling info: queue instance "all.q@SLES11SP1" dropped because it is full

queue instance "all.q@u1010" dropped because it is full
queue instance "all.q@cent48" dropped because it is full
queue instance "all.q@macsuse" dropped because it is full
queue instance "all.q@solaris10" dropped because it is full

In the output above, all queue-instances are already full and there are no more slots left.
3.2.2 Scaling the Reported Load

Sometimes load values have different meanings. The machine load average could be suchan example. It is defined by the number of processes in the operating system’s runningqueue. On a multi-CPU or multi-core host, usually multiple processes can be run at thesame time, so a load of 1.0 means that it is fully occupied on a one core machine whilethere are still resources left on a multi-core machine. In order to resolve these issues, loadreport values can be scaled at the host level.
Example: Downscale load_short by a Factor of 10
Load scaling is host-specific therefore the host configuration must be adapted:

> qconf -me <hostname>
hostname <hostname>
load_scaling load_short=0.10000
...

The original execution host source values can still be seen in the host configuration(load_short=0.08):
> qconf -se <hostname>
hostname <hostname>
load_scaling load_short=0.100000

Grid Engine Administrator’s Guide v 8.7.0 125

3 Special Activities

complex_values NONE
load_values load_avg=0.060000,load_short=0.080000, \

load_medium=0.060000,load_long=0.110000,arch=lx-amd64, \
num_proc=1,mem_free=2742.671875M,swap_free=2053.996094M, \
virtual_free=4796.667969M,mem_total=3144.273438M, \
swap_total=2053.996094M,virtual_total=519\GEShortVersion{}69531M, \
mem_used=401.601562M,swap_used=0.000000M, \
virtual_used=401.601562M,cpu=73.800000,m_topology=SC, \
m_topology_inuse=SC,m_socket=1,m_core=1,m_thread=1, \
np_load_avg=0.060000,np_load_short=0.080000, \
np_load_medium=0.060000,np_load_long=0.110000

...

The current scaled load values (load_short=0.008 in comparison to the source 0.08) areshown using qstat:
> qstat -l h=<hostname> -F load_short
queuename qtype resv/used/tot. load_avg arch states

all.q@<hostname> BIPC 0/0/20 0.06 lx-amd64

hl:load_short=0.008000

The scaled load values are already available with the np_load_* values. They are scaledusing the number of reported processors (num_proc).
Note

3.2.3 Alternative Means to Determine the Scheduling Order

After a default installation, the scheduler is configured in away to choose themore availablehosts first for the new jobs. The scheduler configuration can be viewed with the qconf
-ssconf command.

> qconf -ssconf
...
job_load_adjustments np_load_avg=0.50
load_adjustment_decay_time 0:7:30
host_sort_formula np_load_avg
schedd_job_info false
weight_host_affinity 0.0
weight_host_sort 1.0
weight_queue_affinity 0.0
weight_queue_host_sort 1.0
weight_queue_seqno 0.0

Grid Engine Administrator’s Guide v 8.7.0 126

3 Special Activities

The weight_queue_* and weight_host_*-parameters determine the order of the queue-instances when they are matched against the pending job list. The host_sort_formula de-scribes load type and is calculated if weight_host_sort is set to something bigger than 0.
Queue Sequence Number

When weight_queue_seqno is set to a much higher value than weight_queue_host_sort,the queue sequence number, which is defined in the queue configuration attribute (qconf
-mq <queue_name>) determines the order in which the queued instances are chosen for thepending jobs.
Example: Defining the Queue Order

Create two queues a and b.
> qconf -aq a
> qconf -aq b

Disable queue all.q if it exists.
> qmod -d all.q

Set weight_queue_seqno to 1 and all other weight_-parameters to 0.
> qconf -msconf
...
weight_host_affinity 0.0
weight_host_sort 0.0
weight_queue_affinity 0.0
weight_queue_host_sort 0.0
weight_queue_seqno 1.0
...

Set the seq_no of queue a to 10 and seq_no of queue b to 20.
> qconf -mq a
qname a
hostlist @allhosts
seq_no 10
...

> qconf -mq b
qname b
hostlist @allhosts
seq_no 20
...

Submit some jobs. It can be observed that all jobs are running in queue a.

Grid Engine Administrator’s Guide v 8.7.0 127

3 Special Activities

> qsub -b y sleep 120
> qsub -b y sleep 120
> qsub -b y sleep 120
> qsub -b y sleep 120

> qstat -g c
CLUSTER QUEUE CQLOAD USED RES AVAIL TOTAL aoACDS cdsuE
--
a 0.01 4 0 46 50 0 0
all.q 0.01 0 0 0 60 0 60
b 0.01 0 0 5 5 0 0

Example: Defining the Order on Queue Instance Level

Defining the queue order on the queue level can be too vague when implementing specificscheduling strategies. A queue could span a large number of hosts or even the whole clus-ter. Therefore it is useful to define sequence numbers on queue instance levels (a queueinstance is the part of a queue which sits on a specific host).
The order can be defined on a queue instance level in the following way:

> qconf -mq a
qname a
hostlist @allhosts
seq_no 10,[host1=1],[host2=2],[host3=3]
...
slots 1
...

If 4 jobs are submitted, the first one is dispatched to host1, the second to host2 and so on.
> qsub -b y sleep 120
> qsub -b y sleep 120
> qsub -b y sleep 120
> qsub -b y sleep 120

> qstat
job-ID prior name user state submit/start at queue slots ja-task-ID
--

4 0.55500 sleep daniel r 04/28/2011 14:31:36 a@host1 1
5 0.55500 sleep daniel r 04/28/2011 14:31:36 a@host2 1
6 0.55500 sleep daniel r 04/28/2011 14:31:36 a@host3 1
7 0.55500 sleep daniel r 04/28/2011 14:31:36 a@host4 1

Here host1 takes precedence over host2 in queue a, and so on.
Example: Antipodal Sequence Numbering of Queues

A Altair Grid Engine-managed cluster is often populated by jobs with different priorities. Inmany cases there are several extended I/O intensive (with a low load) batch jobs which are
Grid Engine Administrator’s Guide v 8.7.0 128

3 Special Activities

not time sensitive, running simultaneously with a group of high priority jobs which requireimmediate execution requiring suspension of already-running jobs. In order to configurethe cluster for these two job types, two queues have to be added to the configuration. Forsimplicity, 3 hosts are used in this example.
> qconf -mq low
qname low
hostlist @allhosts
seq_no 10,[host1=3],[host2=2],[host3=1]
...
slots 1
...

> qconf -mq high
qname high
hostlist @allhosts
seq_no 10,[host1=1],[host2=2],[host3=3]
...
slots 1
...

This example shows that the high queue suspends the low queue. The seq_no in both con-figurations is now defined in the queue instance layer with a reverse order respectively.The net result is that jobs which are submitted to the high queue run first host1 then host2and so on and jobs which are running in the low queue begin from the opposite end. Thismeans that jobs are suspended only when the cluster is fully utilized. A drawback in thisexample is the problem of starvation. Low-priority jobs which are running on hosts witha very low sequence number for the high priority queue instance can remain suspendedfor a long time when there are always jobs with higher priority running. A more advancedapproach is shown in section Implementing Pre-emption Logic with the example Mixing
exclusive high priority jobs with low priority jobs.
3.3 Managing Capacities

Administrators are often faced with the problem that the number of resources used at anyone point in time has to be limited for different consumers in order to map given businessrules into a Altair Grid Engine cluster installation. Altair Grid Engine includes several mod-ules for limiting capacities of the managed resources. The main concepts to ensure theselimits in Altair Grid Engine are the resource quota sets and the consumables, which areillustrated in more detail below.
3.3.1 Using Resource Quota Sets

With resource quota sets the administrator is able to restrict various objects such as users,projects, parallel environments, queues, and hosts, using different kinds of limit. Limitscan be static, fixed-value, or dynamic (a simple algebraic expression). All currently definedresource quota sets can be shown using qconf -srqsl. After a default installation, no re-source quota set is defined.
Grid Engine Administrator’s Guide v 8.7.0 129

3 Special Activities

>qconf -srqsl
no resource quota set list defined

Resource quotas can be added withqconf -arqs, modified with qconf -mrqs myname, anddeleted with qconf -drqs myname.
A resource quota set has the following basic structure:
{

name myresourcequotaset
description Just for testing.
enabled TRUE
limit users {*} to slots=2

}

The name denotes the name of the rule. This should be short and informative because thisname can be seen using qstat -j <jobno> as the reason why a specific job was not pro-cessed in the last scheduled run (Note: schedd_job_info must be turned on in the sched-uler (see TODO)).
>qstat -j 3
...
scheduling info: cannot run because it exceeds limit "/////"

in rule "myresourcequotaset/1"
...

The description can contain more detailed information about the limits. This becomes im-portant especially when the cluster configuration grows in order to keep track of all definedrules. It should describe the rules in a way that even after years the purpose of the rulescan be seen immediately.
The enabled field determines whether the rule is enabled (TRUE) or disabled (FALSE). Hencerules do not have to be deleted and restored as a whole, but can be turned off and on,simplifying the handling of resource quota sets.
The entry which defines a rule starts with the keyword limit. In the first example above,each user is limited to the use of 2 slots at a time. If a user has, for example, 3 jobs submitted,one job will stay in the waiting state (qw state) until the first job finishes. The schedulerensures that not more than 2 slots are occupied by one user at the same time.
Multiple limit rules are allowed. If multiple limits match, the first match wins.
{

name myresourcequotaset
description Just for testing
enabled TRUE
limit users {*} to slots=2
limit users {*} to slots=1

}

Grid Engine Administrator’s Guide v 8.7.0 130

3 Special Activities

In this example, the first limit that matches a user is users to slots=2, meaning that a useris allowed to run 2 sequential jobs in parallel.
Limits can have a name. The name must be unique within each resource quota set:
{

name myresourcequotaset
description Just for testing
enabled TRUE
limit name slot2rule users {*} to slots=2
limit name slot1rule users {*} to slots=1

}

Objects, which can be restricted, are users, projects, pes, queues, and hosts. In order tospecify entities within these objects, the { } notation can be used. Special values are theasterisk {}, which means all, the exclamation mark {!}, which can be used to exclude entities, and
the combination of both {!}, meaning are the entities which have not requested the specificobject.
In the following example user1 and user2 (each of them) are restricted to using 2 slots ofthe parallel environment mytestpe at the same time.
{

name myresourcequotaset
description Just for testing
enabled TRUE
limit users {user1,user2} pes { mytestpe } to slots=2

}

In order to limit all users to at most 100 serial jobs running in the system, but unlimitedparallel jobs, the rule below can be used.
{

name myresourcequotaset
description Just for testing
enabled TRUE
limit users {*} pes {!*} to slots=100

}

The limit after the to keyword can be any complex (see TODO) defined in the system. Inorder to define rules, which are different for specific hosts, dynamic complexes can be used.
The following example limits the number of slots on each host to the number of availablecores:
{

name myresourcequotaset
description Just for testing
enabled TRUE
limit hosts {*} to slots=$m_core

}

Grid Engine Administrator’s Guide v 8.7.0 131

3 Special Activities

3.3.2 Using Consumables

Consumables are complexes that have a counting behavior. They can be identified throughthe consumable column, when displaying the complexes with qconf -sc. In a default instal-lation only one (special) consumable is defined - the slots complex.
>qconf -sc
#name shortcut type relop requestable consumable default urgency
#---
...
slots s INT <= YES YES 1 1000
...

The best way to think about consumables is to consider them as counting variables, whichcan have any syntax one can imagine. These consumables can be defined on differentlayers: When they are initialized on the host level they can limit the number of consumerson specific hosts. If they are applied in queues they limit the use of specific queue instances,and when they are used in global configuration (qconf -me global) they limit the usage ofthis resource for each job.
A common task for consumables is to handle special hardware devices for a cluster and tomake them available for the Altair Grid Engine. In the following example, execution hostsare upgraded with GPU cards in order to support special numerical computational jobs.
Host Consumable Example: Adding a GPU to the cluster

In the current cluster, 3 execution hosts are defined and one of them (host1) has the addi-tional GPU processing facility.
> qhost
HOSTNAME ARCH NCPU LOAD MEMTOT MEMUSE SWAPTO SWAPUS

global - - - - - - -
host1 lx26-amd64 4 0.00 934.9M 134.1M 1004.0M 0.0
host2 lx26-amd64 4 0.02 2.0G 430.9M 2.0G 0.0
host3 lx26-amd64 4 0.00 492.7M 41.6M 398.0M 0.0

First, a new consumable must be added in the complex table.
> qconf -mc
#name shortcut type relop requestable consumable default ...
#--
GPU gpu INT <= YES YES 0 ...

Because this consumable is host-dependent (and not queue-dependent), it must be initial-ized per host. The execution server configurationmust be edited and the newGPU complexvalue 1 is added.

Grid Engine Administrator’s Guide v 8.7.0 132

3 Special Activities

> qconf -me host1
hostname host1
load_scaling NONE
complex_values GPU=1
user_lists NONE
xuser_lists NONE
projects NONE
xprojects NONE
usage_scaling NONE
report_variables NONE

Now the value can be seen in the qstat output:
> qstat -F GPU

queuename qtype resv/used/tot. load_avg arch states

all.q@host1 BIPC 0/0/10 0.00 lx26-amd64

hc:GPU=1

all.q@host2 BIPC 0/0/10 0.00 lx26-amd64

all.q@host3 BIPC 0/0/10 0.00 lx26-amd64

In order to request the GPU consumable the user must specify the attribute at job submis-sion time.
> qsub -b y -l GPU=1 sleep 100
Your job 4 ("sleep") has been submitted

Now check the host consumable again:
> qstat -F GPU
queuename qtype resv/used/tot. load_avg arch states

all.q@host1 BIPC 0/1/10 0.00 lx26-amd64

hc:GPU=0
4 0.55500 sleep daniel r 03/04/2011 10:17:21 1

all.q@host2 BIPC 0/0/10 0.00 lx26-amd64

all.q@host3 BIPC 0/0/10 0.00 lx26-amd64

If a second GPU job is started, let the scheduler run again (-tsm):
> qsub -b y -l GPU=1 sleep 100
Your job 5 ("sleep") has been submitted

Grid Engine Administrator’s Guide v 8.7.0 133

3 Special Activities

> qconf -tsm
daniel@hostname triggers scheduler monitoring

> qstat
job-ID prior name user state submit/start at queue slots ja-task-ID

4 0.55500 sleep daniel r 03/04/2011 10:17:21 all.q@host1 1
5 0.55500 sleep daniel qw 03/04/2011 10:17:28

The second job, which requests a GPU, stays in the waiting state until the first GPU jobfinishes, since there is no other host with a GPU consumable configured.
> qstat
job-ID prior name user state submit/start at queue slots ja-task-ID

5 0.55500 sleep daniel r 03/04/2011 10:19:07 all.q@host1 1

Queue Consumable Example: Adding multiple GPUs on cluster hosts

This example illustrates how to use queue consumables. Queue consumables can be usedwhen resources should be split up between several queues. Imagine that two GPU cardsare added to an execution host. Using the approach above withmore counters (two insteadof one) works just fine, but the jobs have to negotiate the GPU used (GPU0 or GPU1). Oneapproach to solve this issue would be for the administrator to provide a script on the exe-cution host which then provides the GPU number for the job. In order to handle this withAltair Grid Engine, queue consumables can be used.
As stated above, the GPU complexmust first be added in the complex list with qconf -mc. Incontrast to a host complex, the initial value has to be defined in the queue layer. Thereforetwo queues, each representing one GPU, must be added and initialized properly.
> qconf -aq gpu0.q
qname gpu0.q
hostlist host1
...
slots 10
...
complex_values GPU=1
...

> qconf -aq gpu1.q
qname gpu0.q
hostlist host1
...
slots 10
...
complex_values GPU=1
...

Grid Engine Administrator’s Guide v 8.7.0 134

3 Special Activities

The complex_values entry can also have different values for each queue instance. If onsome hosts GPU pairs should be requestable by just one job the complex_values entrywould look like the following: GPU=1,[host2=GPU=2].
The hosts entry contains all hosts with two GPUs installed. The complex_values entry isused for initializing the GPU value. The values can now be seen in the qstat output:
> qstat -F GPU
queuename qtype resv/used/tot. load_avg arch states
--
all.q@host1 BIPC 0/0/20 0.23 lx-amd64
--
all.q@host2 BIPC 0/0/10 0.08 lx-x86
--
all.q@host3 BIPC 0/0/10 0.04 lx-amd64
--
all.q@host4 BIPC 0/0/10 0.04 lx-amd64
--
gpu0.q@host1 BIP 0/0/10 0.23 lx-amd64

qc:GPU=1
--
gpu1.q@host1 BIP 0/0/10 0.23 lx-amd64

qc:GPU=1

Now jobs requesting the queue consumable can be submitted:
> qsub -S /bin/bash -l gpu=1 gpu.sh

The gpu.sh is like the following:
#!/bin/bash

if ["x$QUEUE" = "xgpu0.q"]; then
echo "Using GPU 0"
fi

if ["x$QUEUE" = "xgpu1.q"]; then
echo "Using GPU 1"
fi

sleep 100

After the job is scheduled the qstat shows which queue and therefore which GPU is se-lected:
> qstat -F gpu
queuename qtype resv/used/tot. load_avg arch states

Grid Engine Administrator’s Guide v 8.7.0 135

3 Special Activities

all.q@host1 BIPC 0/0/20 0.23 lx-amd64

all.q@host2 BIPC 0/0/10 0.08 lx-x86

all.q@host3 BIPC 0/0/10 0.04 lx-amd64

all.q@host4 BIPC 0/0/10 0.04 lx-amd64

gpu0.q@host1 BIP 0/1/10 0.05 lx-amd64

qc:GPU=0
5 0.55500 gpu.sh daniel r 04/19/2011 08:58:08 1

gpu1.q@host1 BIP 0/0/10 0.05 lx-amd64

qc:GPU=1

The output of the job is:
Using GPU 0

When 3 jobs are submitted each requesting a GPU, only 2 will run at the same time. Thethird one is rejected because 2 GPUs are available. If the scheduler information is turnedon (qconf -msconf) the reason why the third job remains pending can be seen immediately:
> qstat -j <jobno>
...

(-l GPU=1) cannot run in queue "gpu0.q@host1" because it offers only qc:GPU=0.000000
(-l GPU=1) cannot run in queue "gpu1.q@host1" because it offers only qc:GPU=0.000000

3.4 Implementing Pre-emption Logic

Pre-emption is the action of suspending a job in order to free computational resources andresume the job at a later time. The reasons can be different: to avoid thrashing or to givejobs of higher priority precedence. Pre-emption can be configured in Altair Grid Enginein different places and can have different meanings. Limits can be set between differentqueues so that one queue gains precedence over another: jobs in the higher-priority queuecan trigger the suspension of jobs in the lower-priority queue. Furthermore, suspensionthresholds within a queue can be defined so that whenever these limits are exceeded, jobsare suspended. Additionally the Altair Grid Engine calendar is able to suspend resources.In this section the queue-wise suspension feature is explained in detail.
3.4.1 When to Use Pre-emption

Queue-wise subordination can be used whenever jobs have to be grouped into differentpriority classes. Jobs of a certain class are submitted into the corresponding queue. When-ever a particular limit for high-priority jobs in a queue has been reached, the lower-priorityjobs (i.e. the jobs in the subordinate queues) are suspended. After the higher-priority jobshave completed, the suspended jobs are reinstated. Suspending and reinstating jobs is
Grid Engine Administrator’s Guide v 8.7.0 136

3 Special Activities

usually performed by sending the SIGSTOP and SIGCONT signal to the user jobs. In thequeue configuration attribute suspend_method and resume_method the path to a self-definedscript/executable can be added, which overrides the default signals with a user-defined sus-pension/reinstatement behavior. In this script, different suspend/resume methods for dif-ferent jobs can be defined. In the case that a different signal for all jobs is needed, the jobsignal name (SIG*) can be used.
3.4.2 Utilizing Queue Subordination

Queue subordination is defined in the queue configuration, which can bemodified throughthe qconf -mq <queuename> command. The related attribute for subordination definitionsis named subordinate_list. The syntax is:
<queuename>=<slots>, <queuename2>=<slots>, ...

where the queue name denotes the subordinated queue (the lower-priority queue) andslots is the threshold value which triggers the suspension of the subordinate queue.

Example: Suspend all low-priority jobs on a host whenever a job is running in
the high priority queue
First create the low priority queue:
> qconf -aq low.q
qname low.q
hostlist @allhosts
slots 10

Create the high priority queue with a slot limit of 1 (when 1 slot is used in the upper queueto suspend the lower queue).
> qconf -aq high.q
qname high.q
hostlist @allhosts
slots 10
subordinate_list low.q=1

Now submit a job into the subordinate queue on host1:
> qsub -q low.q@host1 -b y sleep 240

See that the job is running:
> qstat
job-ID prior name user state submit/start at queue slots ja-task-ID
--

4 0.55500 sleep daniel r 05/17/2011 15:36:04 low.q@host1 1

Grid Engine Administrator’s Guide v 8.7.0 137

3 Special Activities

Submit the high-priority job:
> qsub -q high.q@host1 -b y sleep 240

After the job is dispatched, the job in the lower-priority queue is immediately suspended.
> qstat
job-ID prior name user state submit/start at queue slots ja-task-ID
--

4 0.55500 sleep daniel S 05/17/2011 15:36:04 low.q@host1 1
5 0.55500 sleep daniel r 05/17/2011 15:36:14 high.q@host1 1

3.4.3 Advanced Pre-emption Scenarios

Job suspension can come at the cost of a lower overall cluster utilization. The followingscenario makes this clear:
The cluster consists of two hosts on which a high.q and a low.q are defined. The high.qsubordinates the low.q with a limit of 2 which means that whenever two or more jobs arerunning in the high.q on a specific host the low.q on that host is subordinated. On bothhosts one job is running in the low.q. Additionally on host1, one job is in high.q. If now asecond higher-priority job is submitted, it does not in all cases run on host2. If for examplethe queue sort method is load and the two jobs on host1 produce less load than the onejob on host2, then the fourth job is scheduled on host1 with the net result that the lower-priority job is suspended. No suspension would result if the job runs on host2.
Usually having the queue instances sorted by load is a good way to prevent subordination.But this is not true in all cases. The following example shows how to combine the queuesort method seq_no and the exclusive queue feature with queue-wise subordination.
Example: Mixing exclusive high-priority jobs with low-priority jobs
In the following scenario, a cluster of 8 hosts is used by two different groups: researchersand students. Usually the researchers have just one or two jobs running while the stu-dents must do their assignments on the cluster. Therefore two hosts are reserved for theresearchers (students should not to have access to these machines) and the remaining 6hosts are used by the students. The researchers want to have their machines exclusively ifa job using 1 or more slots is running, which means a mix of different researcher jobs ononemachine is also not allowed. In some rare cases the researchers havemuchmore work,therefore it should be possible that in such circumstances, they can access the student ma-chines. But when there are just a few student jobs running, the risk of suspending thesejobs should be minimized. All this can be expressed in Altair Grid Engine in the followingway:

• research jobs need machines exclusively, so the exclusive queue complex (consum-able) is needed
• two queues are needed: research.q and student.q

• research jobs should be able to suspend student jobs, so queue-wise subordinationmust be configured
Grid Engine Administrator’s Guide v 8.7.0 138

3 Special Activities

• research jobs should first use their own hosts and if this is not enough, they can usestudent hosts. This requires queue sort method seq_no
• 3 specific student hosts should be the last resort for research jobs: queue sorting ofstudent queue should be diverted to the sort method of the research hosts

The configuration is done in the following way:
Create qexclusive queue consumable (complex).
> qconf -mc
#name shortcut type relop requestable consumable default urgency
#--
qexclusive qe BOOL EXCL YES YES 0 4000

Create the student.q:
> qconf -aq student.q
qname student.q
hostlist host3 host4 host5 host6 host7 host8
seq_no 10,[host3=4],[host4=3],[host5=2],[host6=1],[host7=1],[host8=1]
...
slots 4

Create the research.q which subordinates student.q and define the queue instance exclu-sive resource:
> qconf -aq research.q
qname research.q
hostlist host1 host2 host3 host4 host5
seq_no 10,[host1=1],[host2=1],[host3=2],[host4=3],[host5=4]
slots 4
...
subordinate_list student.q=1
complex_values qexclusive=1
...

Change the scheduler configuration:
> qconf -msconf
...
weight_host_affinity 0.0
weight_host_sort 0.0
weight_queue_affinity 0.0
weight_queue_host_sort 0.0
weight_queue_seqno 1.0
...

Now the researchers have to request the research.q together with the qexclusive complexand the students have to request student.q. This can be enforced by using request files orthe JSV facility.
Grid Engine Administrator’s Guide v 8.7.0 139

3 Special Activities

3.5 Integrating Altair Grid Engine with a License Management
System

Applications that run under Altair Grid Engine control may be licensed. In many cases alicense management system controls the number of concurrent uses of the application.These licenses are configured as consumable resources in Altair Grid Engine. See Intro-duction Guide -> Concepts and Components -> Expressing Capabilities and Capacities andSpecial Activities -> Using Consumables.
Once a consumable resource has been created as a license counter, its capacity must beset. There are different ways to set the capacity (the available licenses) in Altair Grid Engine:
1. Consumable-only counter: Set the capacity (the maximum number of availablelicenses) in the execution host configuration (see man host_conf). For site licenses,set the global host. For node-locked licenses, set the specific execution host.

Altair Grid Engine keeps track of the licenses in use by jobs. No job requesting license(s) isstarted if any license is not met.
This is the easiest and most precise way of handling licenses, but licenses must be con-sumed by Altair Grid Engine batch jobs only. It is not suited for situations with both interac-tive and batch license use.
2. Using only external values (load sensor): A load sensor is used to report license usage.See man page sge_execd(8) for information about load sensors. Examples for loadsensors are in $SGE_ROOT/util/resources/loadsensors.

The load sensor is called at regular intervals (load_report_interval configured in the clusterconfiguration). It queries the license manager for the available number of licenses andreports this number to Altair Grid Engine.
This setup works in clusters with low job throughput and jobs of longer duration. Withhigher job throughput or frequent interactive license use, it suffers from race conditions:

• When licenses are consumed interactively, it takes some time (the load report interval)until the load sensor reports the license usage.
• When a job is started, a license is not immediately consumed. During this time period,further jobs requesting a license may be started.
3. Combining consumable with load sensor: This setup combines approaches 1 and 2:Altair Grid Engine keeps track of licenses via the consumable counter, and the actuallicense usage is reported by a load sensor.

The Altair Grid Engine scheduler will take theminimum of internal license booking and loadvalue as the number of available licenses.
With this setup, interactive license usage is taken into account, and license overbooking dueto jobs not immediately drawing licenses is avoided.
Interactive license usage is still reported to Altair Grid Engine by the load sensor with somedelay. Overbooking licenses due to interactive license usage can still occur.
Grid Engine Administrator’s Guide v 8.7.0 140

3 Special Activities

4. Setting the capacity by an external program: A different approach to reducing thetime window for race conditions to a minimum is by using an external component tomonitor the license usage and dynamically setting the license capacity in the AltairGrid Engine execution host configuration.

3.6 Managing Priorities and Usage Entitlements

Influence of Policy Weights on Final Priority

FIGURE: Influence of policy weights on final priority
Mapping business rules into cluster use is crucial for companies with a cluster shared by dif-ferent entities. Altair Grid Engine supports this through different scheduling policies. Thesepolicies influence the final order of the job list, which is processed by the scheduler. Thescheduler dispatches the jobs to the execution nodes in this order: jobs at the top of the listhave a greater chance of obtaining resources earlier than jobs at the bottom of the list. Jobsthat cannot be dispatched to an execution node due to a lack of resources are deferred tothe next scheduling run. This section describes the different policies which influence thejob order list. There are three general groups of priorities fromwhich the final priority valueis derived: ticket-based priorities, urgency-based priorities, and the POSIX priority. Furtherinformation can be found in the man pages sched_conf and sge_priority.
3.6.1 Share Tree (Fair-Share) Ticket Policy

The Altair Grid Engine Share Tree Policy implements fair share scheduling as described inthe 1998 paper “Fair Share Scheduler” by J. Kay and P. Lauder published in the Communi-cations of the ACM. The algorithm described in the paper is the basis for fair share imple-mentations across a wide range of computing systems.
Thebasic idea of fair share scheduling is to allowan administrator to assign “shares” to usersor groups to reflect the percentage of resources which should be granted to that user orgroup over a period of time. Shares are just numbers which are relative to one another. Forexample, if we assign 100 shares to Jim and 100 shares to Sally, we are indicating that Jimand Sally should share resources equally. If we assign 200 shares to Sally and 100 sharesto Jim, we are indicating that Sally should get twice the resources that Jim gets.
Rather than explicitly defining a period of time, the share tree algorithm defines a slidingwindow of time. The sliding window is described by a half-life period. The half-life period is

Grid Engine Administrator’s Guide v 8.7.0 141

3 Special Activities

the amount of time after which the resource usage will have decayed to half of the originalvalue. That is, as Jim and Sally use computing resources, the system records and accumu-lates their resource usage as numeric values such as CPU seconds or the amount ofmemory(gigabyte-seconds) used. These values are stored by the system and “decayed” based onthe half-life period of time. You can also think of the half-life as the amount of time that re-source usage will “count against” Jim and Sally. If you want Jim and Sally to share resourcesequally on a daily basis, the half-life period could be set to 12 hours. If Jim and Sally shouldshare resources equally on a monthly basis, the half-life period could be set for two weeks.
The illustration below shows how resources are shared between two groups. The twogroups below could represent two users such as Jim and Sally or could represent two differ-ent projects. Initially, if there are jobs submitted by both groups, an equal amount of jobswill be scheduled from each group. If group B receives a greater share of the resources fora period of time, the scheduler will then adjust and attempt to compensate and schedulemore jobs from group A. When group A “catches up” the scheduler will begin schedulingthe same number of jobs from each group.

Altair Grid Engine provides a sophisticated and flexible implementation of the fair sharealgorithm. The Share Tree Policy allows supports a hierarchical tree to represent the re-lationships between users, groups, and projects. The Share Tree Policy also supports fairshare scheduling based on a wide variety of resources including CPU, memory, I/O, andconsumable resources. These resources can be combined in a flexible way to achieve thesharing goals of a site.

Grid Engine Administrator’s Guide v 8.7.0 142

3 Special Activities

Example Share Tree Configurations
The Share Tree Policy supports a wide variety of sharing configurations. Resource sharingcan be specified on a project basis, on a user basis, or on a combined project and userbasis. In this section, we list some of the common use cases for share tree configurationsand describe how to implement them.
User Share Tree
A common use case is to share equally between all users in the cluster. We accomplish thisby defining a special “default” leaf node that will internally expand to represent all users. Inthis case, we decide that we want the sliding window of time to be about one day. Mostjobs are memory bound so we decide to charge usage based on memory.
1. As three different users (Al, Bob, and Carl), submit 100 jobs each sleeping 90 seconds

> qconf -clearusage
> qmod -d all.q
> # Al
> for i in `seq 1 100`; do qsub $SGE_ROOT/examples/jobs/sleeper.sh 90; done
> # Bob
> for i in `seq 1 100`; do qsub $SGE_ROOT/examples/jobs/sleeper.sh 90; done
> # Carl
> for i in `seq 1 100`; do qsub $SGE_ROOT/examples/jobs/sleeper.sh 90; done
> qmod -e all.q

2. Verify that the jobs are scheduled and running in FIFO (first in, first out) order.
> qstat -u ‘*’ -ext

3. Define a share tree with a special “default” leaf node that will internally expand torepresent all users.
Grid Engine Administrator’s Guide v 8.7.0 143

3 Special Activities

> $ qconf -mstree
id=0
name=ROOT
type=0
shares=1
childnodes=1
id=1
name=default
type=0
shares=1
childnodes=NONE

4. Add ENABLE_MEM_DETAILS to support collecting PSS data
> qconf -mconf
...
execd_params ENABLE_MEM_DETAILS=true
...

5. Update the scheduler configuration to schedule based on the share tree by assigningtickets to the share tree policy
> qconf -msconf
...
halftime 12
usage_weight_list mempss=1.000000
...
weight_tickets_functional 0
weight_tickets_share 10000
...
weight_ticket 100.000000
weight_waiting_time 0.000000
weight_deadline 3600000.000000
weight_urgency 0.000000
weight_priority 0.000000

6. Verify that the jobs are no longer ordered and running in FIFO (first in, first out) order.
> qstat -u ‘*’ -ext

Project Share Tree
A common use case for the Share Tree Policy is the need for two or more projects to shareresources. Let’s say that our company has two important and busy projects which are fund-ing the shared computing resources equally. We decide we want to grant the computingresources equally to each project. Let’s assume also that we decide that the sliding windowof time should be about a week. The projects run a variety of jobs, so we decide to chargebased on a combination of CPU usage and memory usage.
Grid Engine Administrator’s Guide v 8.7.0 144

3 Special Activities

1. Create two projects
> qconf -aprj
name projectA
oticket 0
fshare 0
acl NONE
xacl NONE

> qconf -aprj
name projectB
oticket 0
fshare 0
acl NONE
xacl NONE

2. Create a share tree with two projects
> qconf -mstree
id=0
name=Root
type=1
shares=1
childnodes=1,2
id=1
name=projectA
type=1
shares=100
childnodes=NONE
id=2
name=projectB
type=1
shares=100
childnodes=NONE

3. Add ENABLE_MEM_DETAILS to support collecting PSS data
> qconf -mconf
...
execd_params ENABLE_MEM_DETAILS=true
...

4. Create a scheduler configuration to use the share tree policy with a sliding window ofabout one week
> qconf -msconf
...

Grid Engine Administrator’s Guide v 8.7.0 145

3 Special Activities

halftime 84
usage_weight_list mempss=1.000000,cpu=1.0000
...
weight_tickets_functional 0
weight_tickets_share 10000
...
weight_ticket 100.000000
weight_waiting_time 0.000000
weight_deadline 3600000.000000
weight_urgency 0.000000
weight_priority 0.000000
...

5. Submit jobs in both projects and observe how they share resources
> qconf -clearusage
> qmod -d all.q
> for i in `seq 1 20`; do qsub -P projectA $SGE_ROOT/examples/jobs/sleeper.sh 90; done
> for i in `seq 1 20`; do qsub -P projectB $SGE_ROOT/examples/jobs/sleeper.sh 90; done
> qmod -e all.q

6. Observe how the jobs and the share tree nodes are sharing resources
> $ qstat -ext
...
> $SGE_ROOT/utilbin/$SGE_ARCH/sge_share_mon -a
...

Monitoring the Share Tree Policy

Altair Grid Engine includes some tools for monitoring the share tree policy.
qstat
The qstat command can be used to show the results of the share tree policy. One of thebest ways to see the results of share tree scheduling is to look at the number of share treetickets (stckt) granted to each active and pending job. The number of share tree tickets willindicate how the share tree policy is affecting the scheduling order of jobs.
> qstat -ext

sge_share_mon
The sge_share_mon command was specifically designed to monitor the share tree. Thesge_share_mon command reports the following values for each node in the share tree.

Grid Engine Administrator’s Guide v 8.7.0 146

3 Special Activities

Table 75: Values for nodes in share tree reported bysge_share_mon
Name Description
curr_time time stamp of the last status collection for this nodeusage_time time stamp of the last time the usage was updatednode_name name of the nodeuser_name name of the user if this is a user nodeproject_name name of the project if this is a project nodeshares number of shares assigned to this nodejob_count number of active jobs associated to this nodelevel% share percentage of this node among its siblingstotal% overall share percentage of this node among all nodeslong_target_share long term target share that we are trying to achieveshort_target_share short term target share that we need to achieve in order to meetthe long term targetactual_share actual share that the node is receiving based on usageusage combined and decayed usage for this nodewallclock accumulated and decayed wallclock time for this nodecpu accumulated and decayed CPU time for this nodemem accumulated and decayed memory usage for this nodeio accumulated and decayed I/O usage for this nodeltwallclock total accumulated wallclock time for this nodeltcpu total accumulated CPU time for this nodeltmem total accumulated memory usage (in gigabyte seconds) for thisnodeltio total accumulated I/O usage for this node

If the -a option is supplied, an alternate format is displayed where the fields in the tableabove following the usage fields are not displayed. Instead, each node status line con-tains a field for each usage value defined in the usage_weight_list attribute of the sched-uler configuration. The usage fields are displayed in the order that they appear in the us-age_weight_list. Below are some of the supported fields.
Table 76: Supported Fields in usage_weight_list

Name Description
memvmm accumulated and decayed memory usage for this node. Thisrepresents the amount of virtual memory used by all processesmultiplied by the wallclock run-time of the process. The value isexpressed in gigabyte seconds.memrss accumulated and decayed memory usage for this node. Thisrepresents the resident set size (RSS) used by all processesmultiplied by the wallclock run-time of the process. The value isexpressed in gigabyte seconds. The resident set size is theamount of physical private memory plus the amount of physicalshared memory being used by the process.

Grid Engine Administrator’s Guide v 8.7.0 147

3 Special Activities

Name Description
mempss accumulated and decayed memory usage for this node. Thisrepresents the proportional set size (PSS) used by all processesmultiplied by the wallclock run-time of the process. The value isexpressed in gigabyte seconds. The proportional set size is theamount of physical private memory plus a proportion of theshared memory being used by the process.
consumable-resource accumulated and decayed virtual usage for this node for theconsumable resource specified in the usage_weight_listattribute in the scheduler configuration. The amount of theconsumable resource which has been requested by the job ismultiplied by the wallclock run-time of the job. If theconsumable resource is a slot-based resource, the value is alsomultiplied by the number of slots granted to the job.Memory-type consumable resources are expressed in gigabyteseconds.

Here are some examples of the sge_share_mon command.
1. Show the default share tree nodes (including the header) using the default interval of15 seconds

> $SGE_ROOT/utilbin/$SGE_ARCH/sge_share_mon -h

2. Display the share tree leaf nodes including the configured usage names usingname=value format
> $SGE_ROOT/utilbin/$SGE_ARCH/sge_share_mon -a -n -c 1 -x

Advanced Capabilities

Several advanced capabilities have been added to Altair Grid Engine 8.5.0 and later. Theseare described below.
Share Tree based on Proportional Set Size (PSS) on Linux Systems
The Share Tree Policy now supports scheduling based on Proportional Set Size (PSS) orResident Set Size (RSS) on Linux Systems. To schedule based on PSS, use the followingglobal and scheduler configuration.
1. Add ENABLE_MEM_DETAILS=true to the execd_params in the global host configura-tion

> qconf -mconf
...
execd_params ENABLE_MEM_DETAILS=true
...

Grid Engine Administrator’s Guide v 8.7.0 148

3 Special Activities

2. Add “mempss” or “memrss” to the usage_weight_list attribute in the scheduler config-uration
> qconf -msconf
...
usage_weight_list mempss=1.000000
...

Share Tree based on consumable resources
The Share Tree Policy now supports scheduling based on consumable resources. Sinceconsumable resources do not generate usage, the scheduler will create virtual usage forjobs which either request a consumable resource, or receive a default value according tothe complex configuration. A use case for using a consumable resource is a site whichhas a consumable resource called estmem which represents “estimated memory”. In thisuse case, each job submitted requests a certain amount of estimated memory (qsub -l est-mem=1G . . .). Each queue or host is configured with an amount of estimated memory. Theshare tree is configured to schedule based on estimated memory usage.
Here is an example of how to configure the share tree for the estimated memory consum-able resource.
1. Create estimated memory consumable resource called “estmem”

> qconf -mc
#name shortcut type relop requestable consumable default urgency aapre
#--
...
estmem em MEMORY <= YES YES 1G 0 YES
...

2. Add “estmem” to the usage_weight_list attribute in the scheduler configuration. Thiswill cause the scheduler to create virtual usage and to use “estmem” usage for sharetree scheduling decisions.
> qconf -msconf
...
usage_weight_list estmem=1.000000
...

3. To monitor the estimated memory usage in the share tree, use the new -a option tosge_share_mon
> $SGE_ROOT/utilbin/$SGE_ARCH/sge_share_mon -a

Applying Share Tree policy based on slots instead of jobs
In order to reach the target sharing ratios defined in the share tree, the scheduler attemptsto balance the active jobs to push users and projects toward their sharing targets. For
Grid Engine Administrator’s Guide v 8.7.0 149

3 Special Activities

example, if two projects have pending jobs, and projectA is supposed to get 75% of theresources and projectB is supposed to get 25% of the resources, the scheduler will try toschedule 3 projectA jobs for every one projectB job. However, when scheduling a mix ofsequential and parallel jobs (each using a different number of slots), this method is notlikely to produce the desired results. The previous Share Tree Policy algorithm did not takeinto account slot use which means that if a mix of parallel and serial jobs were runningor queued, the number of tickets granted to pending jobs would not result in the correctrun-time sharing ratios and the share tree targets would not be met. When the schedulerconfiguration params attribute SHARE_BASED_ON_SLOTS is set to 1 or TRUE, the schedulerwill now consider the number of slots being used by running jobs and by pending jobswhen pushing users and projects toward their sharing targets as defined by the share tree.That is, a parallel job using 4 slots will be considered to be equal to 4 serial jobs. Whenthe parameter is set to FALSE (default), every job is considered equal. The urgency_slots PEattribute in sge_pe(5) will be used to determine the number of slots when a job is submittedwith a PE range.
To turn on sharing based on slots, add SHARE_BASED_ON_SLOTS to the scheduler configu-ration params attribute.
> qconf -msconf
...
params SHARE_BASED_ON_SLOTS=true

Demonstration of sharing based on slots versus sharing based on jobs.
1. Create projects “a” and “b”

> qconf -aprj
name a
oticket 0
fshare 0
acl NONE
xacl NONE

> qconf -aprj
name b
oticket 0
fshare 0
acl NONE
xacl NONE

2. Create or modify parallel environment OpenMP
> qconf -ap OpenMP
pe_name OpenMP
slots 0
user_lists NONE
xuser_lists NONE

Grid Engine Administrator’s Guide v 8.7.0 150

3 Special Activities

start_proc_args NONE
stop_proc_args NONE
allocation_rule $pe_slots
control_slaves FALSE
job_is_first_task TRUE
urgency_slots min
accounting_summary FALSE
daemon_forks_slaves FALSE
master_forks_slaves FALSE

3. Create project share tree with equal projects “a” and “b”
> vi sharetree
id=0
name=Root
type=1
shares=1
childnodes=1,2
id=1
name=a
type=1
shares=100
childnodes=NONE
id=2
name=b
type=0
shares=100
childnodes=NONE

> qconf -Astree sharetree

4. Configure share tree policy
> qconf -msconf
...
job_load_adjustments NONE
...
params SHARE_BASED_ON_SLOTS=true
...
halftime 12
...
weight_tickets_share 10000
...
weight_ticket 100.000000
weight_waiting_time 0.000000
weight_deadline 3600000.000000
weight_urgency 0.000000
weight_priority 0.000000
...

Grid Engine Administrator’s Guide v 8.7.0 151

3 Special Activities

5. Configure queue with 16 slots
> qconf -mq all.q
...
slots 1,[davidson-desktop=16]
...

6. Disable queue and delete any existing jobs
> qmod -d all.q
> qdel -u `whoami`

7. Clear the share tree usage
> qconf -clearusage

8. Submit multiple 8 slot jobs under the “a” project
> for i in `seq 1 8`; do qsub -P a -pe OpenMP 4 $SGE_ROOT/examples/jobs/sleeper.sh 90; done

9. Submit multiple 1 slot jobs under the “b” project
> for i in `seq 1 32`; do qsub -P b -pe OpenMP 1 $SGE_ROOT/examples/jobs/sleeper.sh 90; done

10. Show pending jobs. Notice the order of the pending jobs contains an equal numberof jobs for project “a” and “b”.
> qstat -ext | head -16

11. Configure sharing based on slots by adding SHARE_BASED_ON_SLOTS=true to thescheduler configuration params attribute.
> $ qconf -msconf
...
params SHARE_BASED_ON_SLOTS=true
...

12. Enable the queue and show the running and pending jobs. Notice that 2 jobs fromproject “a” get started (using 8 slots) and 8 jobs from “b” get started (using 8 slots)resulting in equal sharing of the resources.
> $ qmod -e all.q
> qstat -ext | head -16

Grid Engine Administrator’s Guide v 8.7.0 152

3 Special Activities

Features
Occasionally it might be useful to completely reset the usage for all users and projects backto zero. This can be done using the clear usage command.
> qconf -clearusage

The long term usage which is displayed by the sge_share_mon program can also be clearedusing the clear long term usage command.
> qconf -clearltusage

3.6.2 Functional Ticket Policy

The functional policy is derived in each scheduler run from scratch and does not incorpo-rate any historical data. It is based on four entities: the submitting user, the job itself, the
project in which the job is running, and the department of the user. Each of these is as-signed an arbitrary weight in order to map the desired business rules into the functionalpolicy.
Thepolicy is turnedon in the scheduler configurationby setting weight_tickets_functionalto a high value. The value determines how many tickets are distributed.

> qconf -msconf
...
weight_tickets_functional 1000

The relative weight of all entities is configured through the weight values weight_user,
weight_project, weight_department, and weight_job, which must add up to 1. Becauseticket calculation takes time in a scheduling run, the number of jobs considered for thefunctional ticket policy can be limited with the max_functional_jobs_to_schedule param-eter. The share_functional_shares parameter determines whether each job entitled tofunctional shares receives the full number of tickets and whether the tickets are distributedamong the jobs.
The shares can be configured in the Altair Grid Engine object itself. In the following example,the shares of two projects are modified in a way that mytestproject receives 70 shares andmytestproject2 receives 30 shares.

> qconf -mprj mytestproject
name mytestproject
...
fshare 70
...

> qconf -mprj mytestproject2
name mytestproject
...
fshare 30
...

Grid Engine Administrator’s Guide v 8.7.0 153

3 Special Activities

The share of the user is modified similarly by using qconf -mu <username> to adapt fshare.Departments are a special form of user access lists, with the ability to specify functionalshares. They can be modified through the qconf -mu <departmentname> command. Jobshares are assigned at the time of submission with the -js qsub parameter.
If there is more than one job per user in the pending job list at scheduling time, the fullnumber of calculated tickets is available only to the first job of a user. The second jobreceives only 1/2 the number of tickets, the third job gets 1/3, and the nth job gets 1/n ofthe calculated number of tickets.
3.6.3 Override Ticket Policy

The override ticket policy is very helpful for temporary changes in the overall schedulingbehavior. With this policy an administrator can grant extra tickets to the following entities:users, departments, projects and pending jobs. It allows a temporary override of a config-ured and applied policy such as the share tree or functional ticket policy. The advantage isthat the other policies don’t need to be touched just to obtain precedence for special usersor projects for a short time.
The override tickets are directly set in the objects such as in the functional ticket policy, withthe difference that the attribute value is named oticket. To grant extra tickets at the joblevel the pending jobs can be altered with the -ot <ticketamount> option.
Example:
The pending job list with granted tickets from the functional policy looks like the following:

> qstat -ext -u *
job-ID prior ntckts name user project ... tckts ovrts otckt ftckt stckt ...
--

620 1.00000 1.00000 sleep daniel mytestproject2 ... 1000 0 0 1000 0
615 0.45000 0.45000 sleep daniel mytestproject2 ... 450 0 0 450 0
616 0.30000 0.30000 sleep daniel mytestproject2 ... 300 0 0 300 0
617 0.22500 0.22500 sleep daniel mytestproject2 ... 225 0 0 225 0
618 0.18000 0.18000 sleep daniel mytestproject2 ... 180 0 0 180 0
619 0.15000 0.15000 sleep daniel mytestproject2 ... 150 0 0 150 0

All jobs have functional project tickets. Job 620 is the highest priority job, so it gets the initial900 tickets. Job 620 has an additional 100 functional user tickets. The user’s second job hasonly project tickets, and because it is job 2 it receives 1/2 of the initial tickets (450). Job 616receives a third (300) and so on.
Without any override, job 619 has 150 tickets (tckts). However, it is boosted using the over-ride policy, adding 1000 override tickets. This can only be done by the operator or adminis-trator of the cluster:

> qalter -ot 1000 619
admin@host1 sets override tickets of job 619 to 1000

Grid Engine Administrator’s Guide v 8.7.0 154

3 Special Activities

> qstat -ext -u *
job-ID prior ntckts name user project ... tckts ovrts otckt ftckt stckt ...
--

619 0.15000 0.15000 sleep daniel mytestproject2 ... 1900 1000 1000 900 0
620 1.00000 1.00000 sleep daniel mytestproject2 ... 550 0 0 550 0
615 0.45000 0.45000 sleep daniel mytestproject2 ... 300 0 0 300 0
616 0.30000 0.30000 sleep daniel mytestproject2 ... 225 0 0 225 0
617 0.22500 0.22500 sleep daniel mytestproject2 ... 180 0 0 180 0
618 0.18000 0.18000 sleep daniel mytestproject2 ... 150 0 0 150 0

Now job 619 has 1000 tickets from the override policy and 900 from the functional ticketpolicy (project tickets). The 900 project tickets are now fully counted because the job is ofthe highest priority for the user. At this point, job 620 is no longer the highest priority, so itreceives 100 functional user tickets and 450 functional project tickets. The rest of the jobshave just functional project tickets.
3.6.4 Job Shares

The job shares switch (-js) adds job shares to a job and increases the priority of a pendingjob. The default value is 0 and positive job shares can be added at submit time or withqalter. To reset job shares run qalter -js 0.
The examples below assume that all jobs follow the othermain scheduling policies (urgencypolicy and Posix priority) or the same. Should e.g. a job have a higher Posix priority thanother jobs and the weighting factor of the Posix priority (weight_priority) is higher than theweighting factor of the ticket policy (weight_ticket) the Posix priority will have the dominat-ing impact on the order of the pending job list.
Depending on the setup of Functional Policy or the Share Tree Policy job shares have adifferent impact on the pending job priority.
1. Project share tree with no user leaf nodes

In this setup fair sharing among projects is achieved and the pending order of jobs withina project is by their submit time (first come first serve). When a job submitted in a projectgets job shares, it becomes the highest-priority job within the project even if there are jobsfrom other users. The job does not get a higher priority relative to other projects. Only therelative order of jobs in the same project is affected.
2. Project share tree with user leaf nodes

In this setup fair sharing among projects and fair sharing among jobs from different usersin the same project is achieved. When a job from a user gets job shares, the relative orderof the jobs from the user is affected but the job does not get higher priority relative to jobsfrom other users in the same project. It also does not get a higher priority relative to otherprojects.
3. User share tree

Grid Engine Administrator’s Guide v 8.7.0 155

3 Special Activities

In a user share tree job shares affect the relative priority of the jobs from the same user.The result is the same as described in the Project share tree with user leaf nodes above.
4. Functional policy

When the functional policy is configured, adding job shares moves the job to the top ofthe pending job list. In many cases this behavior is not wanted. As all users can use the-js switch it is possible to add a server-side JSV which sets the job shares to 0. In addition,the -js for qalter is prohibited by not adding js in the global cluster configuration underjsv_allowed_mod.
3.6.5 Handling of Array Jobs with the Ticket Policies

For array jobs a single ticket value is calculated for the whole job. This per-job ticket value isused when calculating the overall priority of an array task in order to sort the job list beforedispatching jobs.
Example:
> qstat -g d -ext
job-ID prior ntckts name ... state ... tckts ...slots ja-task-ID
--------------------------------------...-------...-------...------------
3000000003 0.00000 0.00000 sleep ... qw ... 2500 ... 1 1
3000000003 0.00000 0.00000 sleep ... qw ... 2500 ... 1 2
3000000003 0.00000 0.00000 sleep ... qw ... 2500 ... 1 3

Array tasks that have already been running and have become pending again (e.g. as theywere rescheduled) are treated individually, and their number of tickets can differ from thejob’s ticket count.
Example:
> qstat -g d -ext
job-ID prior ntckts name ... state ... tckts ...slots ja-task-ID
--------------------------------------...-------...-------...------------
3000000003 0.55976 1.00000 sleep ... Rq ... 2500 ... 1 1
3000000003 0.55101 0.12500 sleep ... qw ... 1250 ... 1 2
3000000003 0.55101 0.12500 sleep ... qw ... 1250 ... 1 3

The number of array tasks that are treated individually during ticket calculation can be de-fined with the global configuration qmaster_params MIN_PENDING_ENROLLED_TASKS.
Valid settings for MIN_PENDING_ENROLLED_TASKS are:

• 0: no pending array task will be enrolled (will be treated individually from the job)
• a positive number: this number of pending array tasks will be enrolled
• -1: all pending array tasks will be enrolled

Grid Engine Administrator’s Guide v 8.7.0 156

3 Special Activities

Example with MIN_PENDING_ENROLLED_TASKS=5
> qstat -g d -ext
job-ID prior ntckts name ... state ... tckts ...slots ja-task-ID
--------------------------------------...-------...-------...------------
3000000004 0.00000 0.00000 sleep ... qw ... 2500 ... 1 1
3000000004 0.00000 0.00000 sleep ... qw ... 1250 ... 1 2
3000000004 0.00000 0.00000 sleep ... qw ... 833 ... 1 3
3000000004 0.00000 0.00000 sleep ... qw ... 625 ... 1 4
3000000004 0.00000 0.00000 sleep ... qw ... 500 ... 1 5
3000000004 0.00000 0.00000 sleep ... qw ... 416 ... 1 6
3000000004 0.00000 0.00000 sleep ... qw ... 416 ... 1 7

3.6.6 Urgency Policy

The urgency policies can be divided into two groups, depending on whether the urgency istime- or resource-based. The time-based urgencies are wait time urgency and deadline
urgency. In Altair Grid Engine there is just one: a very flexible resource-based urgency.
Wait Time Urgency

Most computer resources tend to be occupied, forcing low-priority jobs to remain in thepending job list (in the ‘qw’ state). While this is the desired behavior for other policy con-figuration, the problem of job starvation can arise. The wait time urgency addresses thisproblem by adding priority to jobs over time. This means that the priority of a job can beincreased in relation to the length of time it has spent in the job pending queue.
The wait time urgency is configured in the scheduler configuration:

> qconf -ssconf
...
weight_ticket 0.010000
weight_waiting_time 0.000000
weight_deadline 3600000.000000
weight_urgency 0.100000
weight_priority 1.000000

The relevance can be adjusted according to the result of all ticket policies in com-bination (weight_ticket), the deadline policy (weight_deadline), the urgency policy(weight_urgency), and the POSIX priority (weight_priority).
Deadline Urgency

The deadline urgency comes into play when jobs are submitted with a special deadline(qconf -dl). The deadline is the last timebywhich the job should be scheduled. The urgencygrows continuously from the time of submission until the deadline. In order to submit jobswith a deadline the user must be in the deadlineusers list. The reason for this is to preventthe abuse of this functionality by unauthorized users. The weight of the urgency itself isconfigured in the scheduler configuration:

Grid Engine Administrator’s Guide v 8.7.0 157

3 Special Activities

> qconf -ssconf
...
weight_ticket 0.010000
weight_waiting_time 0.000000
weight_deadline 3600000.000000
weight_urgency 0.100000
weight_priority 0.000000

The high value is grounded in the calculation of the deadline contribution value:
deadline contribution = max(weight_deadline /

seconds till deadline is reached , weight_deadline)

When the deadline is missed the weight_deadline is taken in contribution value. Highervalues prioritize those jobs with the most pressing deadlines.
Example

In the following example, a user is added to the deadlineusers list. Afterwards 3 jobs aresubmitted, one without a deadline, one with a deadline a few minutes in the future, andthe third with a deadline a few hours in the future.
> qconf -mu deadlineusers
name deadlineusers
type ACL
fshare 0
oticket 0
entries daniel

> qsub -b y sleep 100
Your job 33 ("sleep") has been submitted

> qsub -b y -dl 201105041410 sleep 100
Your job 34 ("sleep") has been submitted

> qsub -b y -dl 201105050000 sleep 100
Your job 35 ("sleep") has been submitted

The urgency can be viewed using the qstat parameter -urg:
> qstat -urg
job-ID prior nurg urg rrcontr wtcontr dlcontr ... submit/start at deadline
--

34 0.60500 1.00000 12215 1000 0 11215 ... 05/04/2011 14:04:17 05/04/2011 14:10:00
35 0.50590 0.00899 1101 1000 0 101 ... 05/04/2011 14:04:35 05/05/2011 00:00:00
33 0.50500 0.00000 1000 1000 0 0 ... 05/04/2011 14:04:03

After a few seconds, the different increases of the deadline contribution can be seen:
Grid Engine Administrator’s Guide v 8.7.0 158

3 Special Activities

> qstat -urg
job-ID prior nurg urg rrcontr wtcontr dlcontr ... submit/start at deadline

34 0.60500 1.00000 24841 1000 0 23841 ... 05/04/2011 14:04:17 05/04/2011 14:10:00
35 0.50542 0.00425 1101 1000 0 101 ... 05/04/2011 14:04:35 05/05/2011 00:00:00
33 0.50500 0.00000 1000 1000 0 0 s ... 05/04/2011 14:04:03

Resource-Dependent Urgencies
With resource-dependent urgencies it is possible to prioritize jobs depending on the re-sources (complexes) that are requested. Sometimes it is desirable to have valuable re-sources always occupied while cheaper resources remain unused for a specific time. There-fore jobs requesting the valuable resources may obtain these urgencies in order to get ahigher position in the scheduler list. The priority of a resource is defined in the last columnof the complex configuration:

> qconf -mc
#name shortcut type relop requestable consumable default **urgency** ...
#---
arch a RESTRING ## YES NO NONE 0
calendar c RESTRING ## YES NO NONE 0
...
slots s INT <= YES YES 1 1000

As shown, the slots complex has an urgency of 1000 while all other resources have anurgency of 0 in a default configuration. The reason why slots has a predefined urgencyis that it is more difficult for parallel jobs, which require more slots, to have requests filledthan it is for sequential jobs. The urgency value is taken into account for a job only when itrequests it as a hard resource request (in contrast to a soft resource request).
The weight is again configured in the scheduler configuration:
> qconf -ssconf
...
weight_ticket 0.010000
weight_waiting_time 0.000000
weight_deadline 3600000.000000
weight_urgency 0.100000
weight_priority 1.000000

Fair Urgency
Fair Urgency is an extension of the resource-dependent urgencies.
It can be used to achieve an even distribution of jobs over multiple resources.
Example:

• In a cluster there are multiple file servers providing access to multiple file systems.
• Jobs are accessing data from specific file systems.

Grid Engine Administrator’s Guide v 8.7.0 159

3 Special Activities

• File system utilization shall be balanced to optimize file system throughput.
Fair urgency works on resource urgency. Resource urgency is configured by assigning ur-gency to complex attributes.
For the example scenario, 3 complex attributes are created, each with an urgency of 1000.
$ qconf -mc
#name shortcut type relop requestable consumable default urgency ...
#---
filesystem_1 fs1 BOOL ## YES NO 0 1000
filesystem_2 fs2 BOOL ## YES NO 0 1000
filesystem_3 fs3 BOOL ## YES NO 0 1000

As all 3 complex attributes have the same urgency, jobs requesting these resources all getthe same urgency. Assuming no other policies are in place, jobs are scheduled in the orderof submission.
Fair urgency is enabled by listing the resources for which fair urgency scheduling shall bedone in the scheduler configuration, attribute fair_urgency_list:
qconf -msconf
...
fair_urgency_list fs1,fs2,fs3
...

For testing fair urgency we submit 3 groups of 10 jobs. The jobs in one group all requestthe same file system resource, but each group requests a different file system resource:
qsub -l fs1 -N fs1 <job_script>
... (repeat 10 times)
qsub -l fs2 -N fs2 <job_script>
... (repeat 10 times)
qsub -l fs3 -N fs3 <job_script>
... (repeat 10 times)

Due to fair urgency the jobs are not executed in order of submission, but are interleavedby file system:
> qstat
job-ID prior name user state submit/start at queue jclass slots ja-task-ID

31 0.60500 fs1 sgetest1 qw 05/18/2012 12:06:14 1
41 0.60500 fs2 sgetest1 qw 05/18/2012 12:06:24 1
51 0.60500 fs3 sgetest1 qw 05/18/2012 12:06:33 1
32 0.54944 fs1 sgetest1 qw 05/18/2012 12:06:15 1
42 0.54944 fs2 sgetest1 qw 05/18/2012 12:06:25 1
52 0.54944 fs3 sgetest1 qw 05/18/2012 12:06:34 1

Grid Engine Administrator’s Guide v 8.7.0 160

3 Special Activities

33 0.53093 fs1 sgetest1 qw 05/18/2012 12:06:16 1
43 0.53093 fs2 sgetest1 qw 05/18/2012 12:06:25 1
53 0.53093 fs3 sgetest1 qw 05/18/2012 12:06:34 1
34 0.52167 fs1 sgetest1 qw 05/18/2012 12:06:16 1
44 0.52167 fs2 sgetest1 qw 05/18/2012 12:06:26 1
54 0.52167 fs3 sgetest1 qw 05/18/2012 12:06:35 1
35 0.51611 fs1 sgetest1 qw 05/18/2012 12:06:17 1

Fair urgency can be combined with other policies, e.g. with the ticket policies.
Example: Functional policy is configured for users to achieve an even balancing of resourceusage by users:
Enable functional policy in the scheduler configuration:
qconf -msconf
...
weight_tickets_functional 10000
...

Give users functional tickets:
qconf -muser <user>
fshare 1000

Every user submit jobs as shown above (10 jobs per file system).
Jobs are now scheduled to be balanced both by user and by file system:
$ qstat -u *
job-ID prior name user state submit/start at queue jclass slots ja-task-ID
--

31 0.61000 fs1 sgetest1 qw 05/18/2012 12:06:14 1
41 0.60045 fs2 sgetest1 qw 05/18/2012 12:06:24 1
51 0.60024 fs3 sgetest1 qw 05/18/2012 12:06:33 1
61 0.55250 fs1 sgetest2 qw 05/18/2012 12:09:06 1
71 0.54795 fs2 sgetest2 qw 05/18/2012 12:09:17 1
81 0.54774 fs3 sgetest2 qw 05/18/2012 12:09:25 1
32 0.53250 fs1 sgetest1 qw 05/18/2012 12:06:15 1
42 0.53042 fs2 sgetest1 qw 05/18/2012 12:06:25 1
52 0.53023 fs3 sgetest1 qw 05/18/2012 12:06:34 1
62 0.52375 fs1 sgetest2 qw 05/18/2012 12:09:08 1
72 0.52167 fs2 sgetest2 qw 05/18/2012 12:09:18 1
82 0.52148 fs3 sgetest2 qw 05/18/2012 12:09:26 1
33 0.51767 fs1 sgetest1 qw 05/18/2012 12:06:16 1

Grid Engine Administrator’s Guide v 8.7.0 161

3 Special Activities

3.6.7 User Policy: POSIX Policy

The POSIX policy (also called custom policy) is defined per job at the time of job submission.The relevant qsub parameter is -p <value>. Possible values are those from -1023 to 1024.Values above 0 can be set by the administrator only. This feature allows a user to bring aspecific order to their own jobs.
Example
In the following example, several jobs with different priorities are submitted by the admin-istrator (this allows positive priorities).
> qsub -b y -p 1 sleep 60
Your job 6 ("sleep") has been submitted

> qsub -b y -p 10 sleep 60
Your job 7 ("sleep") has been submitted

> qsub -b y -p 100 sleep 60
Your job 8 ("sleep") has been submitted

> qsub -b y -p 1000 sleep 60
Your job 9 ("sleep") has been submitted

An attempt to submit with an invalid priority results in the following error message appear-ing:
> qsub -b y -p 10000 sleep 60
qsub: invalid priority 10000. must be an integer from -1023 to 1024

> qsub -b y -p -1 sleep 60
Your job 10 ("sleep") has been submitted

> qsub -b y -p -10 sleep 60
Your job 11 ("sleep") has been submitted

> qsub -b y -p -100 sleep 60
Your job 12 ("sleep") has been submitted

> qsub -b y -p -1000 sleep 60
Your job 13 ("sleep") has been submitted

The effect of the priorities can be seen with the qstat command:
> qstat -pri
job-ID prior nurg npprior ntckts **ppri** name user state submit/start at ...
--

9 1.04328 0.50000 0.98828 0.50000 1000 sleep daniel qw 05/05/2011 09:09:47
8 0.60383 0.50000 0.54883 0.50000 100 sleep daniel qw 05/05/2011 09:09:44

Grid Engine Administrator’s Guide v 8.7.0 162

3 Special Activities

7 0.55988 0.50000 0.50488 0.50000 10 sleep daniel qw 05/05/2011 09:09:41
6 0.55549 0.50000 0.50049 0.50000 1 sleep daniel qw 05/05/2011 09:09:36
4 0.55500 0.50000 0.50000 0.50000 0 sleep daniel qw 05/05/2011 09:09:21

10 0.55451 0.50000 0.49951 0.50000 -1 sleep daniel qw 05/05/2011 09:09:58
11 0.55012 0.50000 0.49512 0.50000 -10 sleep daniel qw 05/05/2011 09:10:01
12 0.50617 0.50000 0.45117 0.50000 -100 sleep daniel qw 05/05/2011 09:10:04
13 0.06672 0.50000 0.01172 0.50000 -1000 sleep daniel qw 05/05/2011 09:10:08

A job submitted without any priority (job 4) has the priority 0, which results in a normalizedpriority value (npprior) of 0.5. The lower the priority, the lower the normalized value. Theabsolute weight of the POSIX priority is again defined in the scheduler configuration.
> qconf -ssconf
...
weight_ticket 0.010000
weight_waiting_time 0.000000
weight_deadline 3600000.000000
weight_urgency 0.100000
weight_priority 1.000000

3.7 Job Placement

Job placement is the main task of the scheduler component within the Altair Grid Enginesge_qmaster process. Job placement is a term for multiple steps that need to be doneto correctly decide whether and where jobs can be started and which resources they canconsume. The rules that the scheduler uses to drive those decisions are manager-definedsettings in the system.
The scheduler algorithm that is repeatedly triggered starts new incoming jobs and handlesall steps required for jobs that leave the system because they have finished. To dispatchnew jobs the scheduler puts all waiting jobs into an order that obeys policies and priorities.Then it does the same for hosts and queues that provide resources for jobs. The final andmost important step is to try to match waiting jobs to hosts and queues according to policy,priority, underlying resource requirements, and access rights. The sorting steps for pendingjobs and hosts/queues influence the dispatching step that follows afterwards. They are themajor rules that influence job placement.
Characteristics that influence job sorting of pending jobs are described inmore detail in thesection Managing Priorities and Usage Entitlements
The following subsections show the different parts that influence the host/queue sorting,and describe how to configure the scheduler so that it consumes the correct host/queueresources first.
3.7.1 Host/Queue Sorting

The following general characteristics influence host sort order:
• Host load

Grid Engine Administrator’s Guide v 8.7.0 163

3 Special Activities

• Affinity of jobs already running on a host (host affinity)
Queue sorting can be influenced by:

• Queue Sequence Number• Affinity of jobs already running in a queue (queue affinity)• Outcome of host sorting (host load and host affinity)
If and to what extent a specific characteristic will be considered by the host/queue sortingdepends on a set of weighting factors that are described in more detail in the sectionsbelow.
Host Load

Host sorting can be influenced by one ormore load values that are reported by hosts. Theseload values are defined using the host_sort_formula. The formula allows individual loadvalues and complex values defined for all hosts to be weighted and combined into onefinal value.
host_sort_formula := weighted_value [operator weighted_value] .
operator := ‘+’ | ‘-’ .
weighted_value := weight | load_value [‘*’ weight] .
weight := <positive_integer> .

load_value represents a load value (see sge_execd(8)) or consumable resource being trackedfor each host (see complex(8)), or an administrator-defined load value (see the load_sensorparameter in sge_conf(5)). positive_integer represents a positive integer value. np_load_avgis the default setting for host_sort_formula.
The extent to which the final load value is considered for host sorting can be adjusted withthe weight_host_sort parameter in the scheduler configuration.
> qconf -ssconf
...
host_sort_formula np_load_avg
weight_host_affinity 0.0
weight_host_sort 1.0
weight_queue_affinity 0.0
weight_queue_host_sort 1.0
weight_queue_seqno 0.0
...

The example above shows an excerpt of a scheduler configuration that enables host andqueue sorting according to the load value np_load_avg. Sorting according to sequence num-ber or affinity is disabled. As a consequence the schedulerwill favor hostswith lower systemloads when starting new jobs.
Affinity

Grid Engine Administrator’s Guide v 8.7.0 164

3 Special Activities

Affinity is an optional value which is assigned to hosts or queue instances based on therunning jobs and their resource requests.
Sorting can be done according to affinity by setting the weight_host_affinity and/or theweight_queue_affinity weighting factors.
Positive affinity values will cause hosts/queue instances to be sorted to the top of thehost/queue instance list; negative values (anti-affinity) will cause hosts/queue instances tobe sorted to the bottom of the host/queue instance list.
> qconf -ssconf
...
weight_host_affinity 1.0
weight_host_sort 0.0
weight_queue_affinity 1.0
weight_queue_host_sort 1.0
weight_queue_seqno 0.0

The example above shows an excerpt of a scheduler configuration that enables host andqueue sorting according to affinity. Under the assumption that the affinity value of thecomplex attribute ‘slots’ has been changed to a positive value (e.g. 1.0) this will cause jobsto build clusters on hosts/queues where other jobs are already running. With a negativevalue (e.g. -1.0) jobs will fill up hosts and queues evenly.
See also Affinity, Anti-Affinity, Best Fit.
Sequence Number

The sequence number is a manager-definable attribute of a queue that will influence thequeue sorting when weight_queue_seqno is set accordingly.
> qconf -ssconf
...
weight_host_affinity 0.0
weight_host_sort 1.0
weight_queue_affinity 0.0
weight_queue_host_sort 1.0
weight_queue_seqno 100.0

The example above shows an excerpt of a scheduler configuration that enables sequencenumber based scheduling. The configuration defines a preference for individual queuesresiding on a host.
Combining Multiple Placement Policies

It is possible to combine multiple job placement policies by adjusting the weighting factorsof each characteristic accordingly:
> qconf -ssconf
...
host_sort_formula np_load_avg

Grid Engine Administrator’s Guide v 8.7.0 165

3 Special Activities

weight_host_affinity 10.0
weight_host_sort 1.0
weight_queue_affinity 10.0
weight_queue_host_sort 1.0
weight_queue_seqno 100.0

With the scheme above the the scheduler will utilize queues according to the defined queuesequence number first. If there are multiple queues with the same sequence number, itwill utilize those according to queue affinity. Host affinity and host load will have the leastimpact.
Defaults for All Weighting Factors That Influence Host/Queue Sorting
These are the defaults for all parameters that influence host/queue sorting:
> qconf -ssconf
...
host_sort_formula np_load_avg
weight_host_affinity 0.0
weight_host_sort 1.0
weight_queue_affinity 0.0
weight_queue_host_sort 1.0
weight_queue_seqno 0.0

The influence of affinity and sequence number of queues is disabled by default. Hosts willbe sorted according to np_load_avg only.
3.7.2 Affinity, Anti-Affinity, Best Fit

The affinity concept is new since Altair Grid Engine 8.6.0 and it allows the assignment ofeach host or queue an affinity value for each consumed resource used by jobs that arerunning on the host or queue.
Affinity can be positive or negative. Positive affinity will attract other pending jobs, andnegative affinity will reject other pending jobs. Attraction/rejection will work on the hostand/or queue level if it is enabled by setting the weighting parameters weight_host_affinityand/or weight_queue_affinity.
The affinity values are used in sorting the host list and/or the queue instance list. Sortingbased on the affinity value will cause

• affinity (so that jobs build clusters on hosts or queues),• anti-affinity (so that jobs are distributed on hosts in the cluster or queues residing onhosts)• or best fit (if a mixture of positive and negative affinity values is defined for differentresources)
The affinity value is calculated for every resource (complex value) that a running job hasrequested and which is defined for a host or queue instance, either via manual definitionin the complex_values of the host or queue instance, or via load value.
Grid Engine Administrator’s Guide v 8.7.0 166

3 Special Activities

For all resource types (also non-number-based complexes such as restring) the absolutenumber of the affinity complex attribute will be used as the affinity for the correspondingresource request of a job. For consumable resources the affinity value of a resource will actas multiplier for the underlying resource requests of a job that are granted.This means that one big running job attracts/rejects to the same extent as multiple smallrunning jobs on the same host or queue as long as big and multiple small consume thesame amount of resources.
Where there are multiple resource requests for complex attributes with non-zero affinity,setting the job’s affinity value is the sum of the affinity values of corresponding resources.
Affinity Use Cases

Affinity Datawhich is required for running a job is contained on a shared filesystemwhichis auto-mounted at job start. We want to make use of the filesystem caches and make surethat the file system is mounted on as few hosts as possible.
Create a complex attribute for the data source/filesystem with a positive affinity factor:
$ qconf -mc
#name shortcut type relop requestable consumable default urgency aapre affinity ...
filesystem_A fs_A BOOL == YES NO 0 0 NO 1.000000 ...

Assign it to the hosts where the data can be made accessible.
$ qconf -mattr exechost complex_values filesystem_A=true qconf -shgrp_resolved
@data_hosts

Request the resource when submitting jobs:
$ qsub -l filesystem_A . . .
The actual affinity value of a host / queue instance can be seen in qstat output:
$ qstat -F filesystem_A

queuename qtype resv/used/tot. np_load arch states

all.q@host1 BIPC 0/2/100 0.00 lx-amd64

gf:filesystem_A=1 (haff=2.000000)
3000022205 0.55500 APP_A user1 r 07/26/2018 17:12:57 1
3000022206 0.55500 APP_A user1 r 07/26/2018 17:13:07 1

all.q@host2 BIPC 0/0/10 0.00 sol-amd64

gf:filesystem_A=1

Anti-Affinity A certain application is causing high network load. Therefore we want todistribute jobs running this application over a high number of hosts. We use anti-affinityfor this purpose.
Create a complex variable for applications causing high network load:
Grid Engine Administrator’s Guide v 8.7.0 167

3 Special Activities

$ qconf -mc
#name shortcut type relop requestable consumable default urgency aapre affinity
high_network hn BOOL == YES NO 0 0 NO -1.000000

The jobs can run on any host, so we define it on a global level:
$ qconf -me global
complex_values high_network=true

Request the high_network resource when submitting jobs:
$ qsub -l hn ...

Anti-Affinity values can be seen in qstat output:
$ qstat -F hn
queuename qtype resv/used/tot. np_load arch states

all.q@host1 BIPC 0/1/100 0.00 lx-amd64

gf:high_network=1 (haff=-1.000000)
3000022207 0.55500 HN user1 r 07/26/2018 17:40:34 1

all.q@host2 BIPC 0/1/10 0.00 sol-amd64

gf:high_network=1 (haff=-1.000000)
3000022208 0.55500 HN user1 r 07/26/2018 17:40:43 1

Best Fit Let’s assume we have a combination of the two previous examples. Applicationsneed data from a certain filesystem and we want to make uses of filesystem caching, sowe want to use affinity to run jobs on hosts where jobs requesting the same filesystem arealready running.
On the other hand, one of these applications needing access to the filesystem produceshigh network load, so we want to distribute those instances over multiple hosts.
If we combine both Affinity and Anti-Affinity this is called Best Fit.
With the settings used in the two examples above, submit the following jobs:

$ qsub -l hn -l fs_A ...
$ qsub -l hn -l fs_A ...
$ qsub -l fs_A ...
$ qsub -l fs_A ...
$ qsub -l fs_A ...
$ qsub -l fs_A ...
$ qsub -l fs_A ...
$ qsub -l fs_A ...

This will result in the following resource assignment and affinity values:
Grid Engine Administrator’s Guide v 8.7.0 168

3 Special Activities

$ qstat -F fs_A,hn
queuename qtype resv/used/tot. np_load arch states

all.q@host1 BIPC 0/1/10 0.00 lx-amd64

gf:high_network=1 (haff=-1.000000)
gf:filesystem_A=1 (haff=1.000000)

3000022218 0.55500 APP_A_HN user1 r 07/27/2018 09:15:35 1

all.q@host2 BIPC 0/6/10 0.00 lx-amd64

gf:high_network=1 (haff=-1.000000)
gf:filesystem_A=1 (haff=6.000000)

3000022219 0.55500 APP_A_HN user1 r 07/27/2018 09:15:36 1
3000022220 0.55500 APP_A user1 r 07/27/2018 09:15:46 1
3000022221 0.55500 APP_A user1 r 07/27/2018 09:15:48 1
3000022222 0.55500 APP_A user1 r 07/27/2018 09:16:08 1
3000022223 0.55500 APP_A user1 r 07/27/2018 09:16:09 1
3000022224 0.55500 APP_A user1 r 07/27/2018 09:16:10 1

all.q@host3 BIPC 0/0/100 0.07 lx-amd64

gf:high_network=1
gf:filesystem_A=1

3.8 Advanced Management for Different Types of Workloads

3.8.1 Parallel Environments

Altair Grid Engine supports the execution of sharedmemory or distributedmemory parallelapplications. Such parallel applications require some kind of parallel environment.
Examples for such parallel environments are:

• shared memory parallel operating systems
• the distributed memory environments named Message Passing Interface (MPI)
• the distributed memory environments named Parallel Virtual Machine (PVM).

These environments are either provided by hardware vendors or in different forms asopen source software. Depending on implementation and their characteristics and require-ments, these parallel environments need to be integrated differently to be used in combi-nation with our software.
Altair Grid Engine provides an adaptive object to integrate parallel environments with thesystem. The administrator of a Altair Grid Engine system has to deploy this object via pre-defined scripts that are included in the distribution, so that users can easily deploy paralleljobs. Note that the administrator has the ability to:

• define access rules that allow or deny the use of a parallel environment

Grid Engine Administrator’s Guide v 8.7.0 169

3 Special Activities

• define boundary conditions for how the resources are consumed within a parallelenvironment.
• limit access to a parallel environment by reducing the number of available slots orqueues

Commands to Configure Parallel Environment Objects
To integrate arbitrary parallel environments with Altair Grid Engine it is necessary to definea set of specific parameters and procedures for each. Parallel environment objects can becreated, modified or deleted with the following commands.

• qconf -ap pe_name
This is the command to add a parallel environment object. It opens an editor andshows the default parameters for a parallel environment. After configuring and savingnecessary values and closing the editor, a new environment is created.

• qconf -Ap filename|dirname
Adds a new parallel environment object whose specification is stored in a file. If adirectory is specified, parallel environment objects for every configuration file in thedirectory are added.

• qconf -dp pe_name
Deletes the parallel environment object with the given name.

• qconf -Dp filename|dirname
Deletes a parallel environment object from the specified file or from every file in agiven directory.

• qconf -mp pe_name
Opens an editor and shows the current specification of the parallel environment withthe name pe_name. After changing attributes, saving themodifications ,and closing theeditor, the object is modified accordingly.

• qconf -Mp filename|dirname
Modifies a parallel environment object from the specified file. If a directory is specified,parallel environment objects for every configuration file in the directory are modified.

• qconf -sp pe_name
Shows the current specification of the parallel environment with the name pe_name.

• qconf spl
Shows the list of names of available parallel environments.

• qconf -spld [pe_list]
Shows a detailed list of all parallel environment objects of an Altair Grid Engine clusteror objects in <pe_list>.

Configuration Parameters of Parallel Environments
Each parallel environment object supports the following set of configuration attributes:
Grid Engine Administrator’s Guide v 8.7.0 170

3 Special Activities

• Attribute: pe_name Value Specification: The name of the parallel environment to be usedwhen attaching it to queues or when administering its definition. This name has bebe specified by users who explicitly request a certain type of parallelism for jobs.
• Attribute: slots Value Specification: The total number of parallel processes allowed torun concurrently under the parallel environment.
• Attribute: user_lists Value Specification: A comma-separated list of user access names.Each user contained in at least one of the enlisted access lists has access to the parallelenvironment as long as it is not also explicitly excluded via the xuser_lists parameterdescribed below.
• Attribute: xuser_lists Value Specification: The xuser_lists parameter contains acomma-separated list of user access lists. Any user listed in xuser_list is not allowedto access the parallel environment. If the xuser_lists parameter is set to NONE (thedefault) any user has access. If a user is listed in both xuser_lists and a user_liststhe user is denied access to the parallel environment.
• Attribute: start_proc_args Value Specification: This parameter defines the commandline of a start-up procedure for the parallel environment. The keyword NONE can beused to disable the execution of a start-up script. The specified start-up procedure isinvoked on the execution host of the job before executing the job script. Its purpose isit to set up the parallel environment corresponding to its needs. The syntax for the pa-rameter value is: [username@]path [arg ...] The optional username prefix specifiesthe user under which this procedure is started. The standard output of the start-upprocedure is redirected to the file NAME.poJID in the job’s working directory, with NAMEbeing the name of the job and JID being the job’s identification number. Likewise,the standard error output is redirected to NAME.peJID. The following special variablesexpanded at runtime can be used along with any other strings which have to be inter-preted by the start and stop procedures to constitute a command line: $pe_hostfileThe pathname of a file containing a detailed description of the layout of the parallelenvironment to be set up by the start-up procedure. Each line of the file refers to ahost on which parallel processes are to be run. The first entry of each line denotes thehostname, the second entry is the number of parallel processes to be run on the host,the third entry is the name of the queue, and the fourth entry is a processor range tobe used when operating with a multiprocessor machine. $host The name of the hoston which the startup or stop procedures are started. $job_owner The username of thejob owner. $job_id Altair Grid Engine’s unique job identification number. $job_nameThe name of the job. $pe The name of the parallel environment in use. $pe_slotsNumber of slots granted for the job. $processors The processor’s string as containedin the queue configuration of the primary queuewhere the parallel job is started (mas-ter queue). $queue The cluster queue of the queue instance where the parallel job isstarted.
• Attribute: stop_proc_args Value Specification: The invocation command line of a shut-downprocedure for the parallel environment. Similar to start_proc_args thismethodis executed on the execution host. The keyword NONE can be used to disable the ex-ecution of a shutdown procedure. If specified this procedure is used after the jobscript has finished. Its purpose is it to stop the parallel environment and to remove itfrom all participating systems. Syntax, output files and special variables that can bespecified are the same as for start_proc_args.

Grid Engine Administrator’s Guide v 8.7.0 171

3 Special Activities

• Attribute: allocation_rule Value Specification: The allocation rule is interpreted bythe scheduler of the Altair Grid Engine system. This parameter helps the schedulerdecide how to distribute parallel processes among the available machines. If, for in-stance, a parallel environment is built for shared memory applications only, all paral-lel processes must be assigned to a single machine regardless of how many suitablemachines are available. If, however, the parallel environment follows the distributedmemory paradigm, an even distribution of processes among machines may be favor-able. The current version of the scheduler understands the following allocation rules:
• $fill_up
Starting from the best suitable host/queue, all available slots are allocated. Furtherhosts and queues are filled as long as a job requires slots for parallel tasks.

• $round_robin
From each suitable host a single slot is allocated until all tasks requested by the par-allel job are dispatched. If more tasks are requested than suitable hosts are found,allocation starts again from the first host. The allocation scheme walks through suit-able hosts in a best-suited-first order.

• Positive number or $pe_slots
An integer number fixing the number of processes per host. If the number is 1, allprocesses have to reside on different hosts. If the special denominator $pe_slots isused, the full range of processes as specified with the qsub -pe has to be allocated ona single host nomatter which value belonging to the range is finally chosen for the jobto be allocated.

• Attribute: control_slaves Value Specification: This parameter can be set to TRUE or
FALSE. It indicates whether Altair Grid Engine is the creator of the slave tasks of a par-allel application on the execution host and thus has full control over all processes in aparallel application, which enables capabilities such as resource limitation and correctaccounting. However, to gain control over the slave tasks of a parallel application, asophisticated parallel environment interface is required, which works closely togetherwith Altair Grid Engine facilities. FALSE is the default for this parameter.

• Attribute: job_is_first_task Value Specification: The job_is_first_task parametercan be set to TRUE or FALSE. A value of TRUE indicates that the Altair Grid Enginejob script will also start one of the tasks of the parallel application, while a value of
FALSE indicates that the job script and its child processes are not part of the parallelprogram. In this case the number of slots reserved for the job is the number of tasksrequested with the -pe switch of the submit application, but the number of tasks isthe number of tasks requested plus one additional task. The allocation_rule doesnot apply to this additional task, i.e. with an allocation_rule of 2, the job script andtwo tasks are put on the first host. On later hosts, only two tasks are scheduled.With the introduction of per-PE task requests (-petask submit option), specificresource requests can be assigned to the job script and to each single parallel task.If job_is_first_task is set to FALSE, the additional task that is added automaticallygets the ID 1. Because it might depend on which PE was assigned to the job bythe Altair Grid Engine Scheduler (one with job_is_first_task FALSE or one with
job_is_first_task TRUE configured?) if the resource requests for PE task ID 1refer to the automatically added task or to the first explicitly requested task, setting

Grid Engine Administrator’s Guide v 8.7.0 172

3 Special Activities

job_is_first_task FALSE is not recommended. Instead, set job_is_first_task
TRUE and specify the resource requests for the job script and all tasks properly.

• Attribute: urgency_slots Value Specification: For pending jobs with a slot range parallelenvironment request, the number of slots is not determined. This setting specifies themethod to be used by Altair Grid Engine to assess the number of slots such jobsmightfinally get. The following methods are supported:
• Positive number
The specified number is directly used as the prospective slot amount.

• min
The slot range minimum is used as the prospective slot amount. If no lower bound isspecified, range 1 is assumed.

• max
The value of the slot range maximum is used as the prospective slot amount. If noupper bound is specified with the range, the absolute maximum possible for the PE’sslot setting is assumed.

• avg
The average of all numbers occurring within the job’s parallel range request is as-sumed.

• Attribute: accounting_summary Value Specification: This parameter is only checked if
control_slaves is set to TRUE. In this case accounting information is available for everysingle slave task of a parallel job. These parameters can be set to TRUE so that only asingle accounting record will be written to the accounting file.

Note that the functionality of the start-up and shutdown procedures is the responsibility ofthe administrator configuring the parallel environment. Altair Grid Engine will invoke theseprocedures and evaluate their exit status. If the procedures do not perform their tasksproperly or if the parallel environment or the parallel application behave unexpectedly, Al-tair Grid Engine has no means of detecting this.
Set Up Parallel Environment for PVM Jobs

A central part of the parallel environment integration with Altair Grid Engine is the correctsetup of the startup and shutdown procedures. The Altair Grid Engine distribution con-tains various script and C program examples that can be used as the starting point for aPVM or MPI integration. These examples are located in the directories $SGE_ROOT/pvm and
$SGE_ROOT/mpi.
Let’s have a more detailed look at the startup procedure of the PVM integration. The scriptis $SGE_ROOT/pvm/startpvm.sh. This script requires three command-line arguments:

• The first is the path of a file generated by Altair Grid Engine. The content of that file isneeded by PVM.
• The second parameter is the hostname of an execution host where the startpvm.shscript is started.

Grid Engine Administrator’s Guide v 8.7.0 173

3 Special Activities

• The last parameter is the path of the PVM root directory.
The host file that is created by Altair Grid Engine contains a description of all resources thathave been assigned to the parallel job that is in the process of being started. This file hasthe following format:

• The first entry in each line is an execution host name.
• The second entry defines the number of slots to be available on the host.
• The third entry defines the queue that controls the corresponding available slots.
• The last parameter entry specifies a processor range to be used for a multiprocessormachine.

PVM also needs a host file but the file format is slightly different from the default file formatgenerated by Altair Grid Engine. Therefore the startpvm.sh script uses the content of thedefault file to generate one that is PVM-specific. After doing this, the script starts the PVMparallel environment. In case this PVM setup has any errors, the startpvm.sh script willreturn with an exit status not equal to zero. Altair Grid Engine will not start the job scriptin this case and instead will indicate an error. If the startup script was successful, the jobscript will be started and will use the prepared parallel environment.
A parallel job that has been set up correctly and either finishes or is terminated via a termi-nation request will use the termination method set up in the parallel environment. For thePVM example above, this would mean that the stoppvm.sh script is triggered. This script isresponsible for halting the parallel environment and terminating processing of the paralleljob.
Submitting Parallel Jobs

To run parallel jobs under the control of a certain parallel environment, this parallel envi-ronment has to be associated with one or more queues. Parallel jobs have to request theparallel environment in order to use the needed resources. The queue where the job scriptof a parallel job is executed is the so-called master queue whereas all other queues thatprovide compute resources for a parallel job are slave queues.
When job_is_first_task is set to FALSE, the master queue is only used to set up the par-allel job. In most cases it will not extensively use the underlying compute resources of thehost where the master queue is located. In such setups it might make sense to select amaster queue manually with the -masterq switch of the qsub command to avoid having thejob script of the parallel job started on resources that should be consumed by compute-intensive slave tasks of the parallel job.

Grid Engine Administrator’s Guide v 8.7.0 174

3 Special Activities

Table 77: Submit parameters influencing parallel jobs
Parameter Description
-pe qsub, qsh, qrsh, qlogin or qalter switch is followed by a parallelenvironment specification in the following format: pe_name

pe_min[-[pe_max]],[-]pe_max where pe_name specifies theparallel environment to instantiate and pe_min and pe_maxspecify the minimum or maximum number of slots that can beused by the parallel application.
-petask This parameter is available for qsub, qsh, qrsh and qalter incombination with parallel jobs. It defines or redefines resourceor queue requests specific to a group of parallel tasks. For thisgroup, the job requests specified with -q and -l do not apply;instead, the requests following the -petask parameter apply.
-masterq This parameter is available for qsub, qsh, qrsh and qalter incombination with parallel jobs. It defines or redefines a list ofcluster queues, queue domains and queue instances which maybe used to become the master queue of the parallel job. Themaster queue is defined as the queue where the parallel job isstarted. The other queues to which the parallel job spawnstasks are called slave queues. A parallel job has only one masterqueue. With the introduction of the -petask parameter,

-masterq is deprecated. Use -petask master -q ... instead.
-masterl This parameter is available for qsub, qsh, qrsh and qalter incombinatin with parallel jobs. It defines or redefines resourcerequests for the master task of the parallel job only. With theintroduction of the -petask parameter, -masterl is deprecated.Use -petask master -l ... instead.
-v and -V These parameters are available for qsub and qalter. The qshand qrsh support it partly (see qrsh man page). They define orredefine the environment variables to be exported to theexecution environment of the job. The same set of variables isalso available in the start-up and stop scripts configured inparallel environments.

The following command submits a parallel job:
qsub -pe mpi 32-128 \

-v SHARED_MEM=TRUE,MODEL_SIZE=HUGE \
-petask comtroller -q big.q \
pe_job.sh huge.data

• Depending on the definition of the mpi parallel environment, the job will use a mini-mum of 32 slots but a maximum of 128 slots.
• The master queue will be biq.q

Grid Engine Administrator’s Guide v 8.7.0 175

3 Special Activities

• Two environment variables are passed with the job. They will be available in the ex-ecution context of the job but also in the start-up and stop scripts configured in the
mpi parallel environment

• The job name is pe_job.sh with one parameter huge.data

3.8.2 Setting Up Support for Interactive Workloads

To run interactive jobs immediately (see also User Guide -> Interactive Jobs) the executingqueue needs to have interactive as queue-type.
Set or change queue-type:
qconf -mq <queue_name>

INTERACTIVE needs to be added to the qtype-line.
Check whether qtype is INTERACTIVE:
qstat -f
queuename qtype resv/used/tot. load_avg arch states

all.q@host1 IP 0/0/10 0.01 lx-amd64

test.q@host1 BIPC 0/0/10 0.01 lx-x86

qtype has to have “I” included.
3.8.3 Setting Up Support for Checkpointing Workloads

Checkpointing is a mechanism that allows a “freeze” of a running application so that it canbe restored at a later point in time. This is especially useful for applications that take a longtime to complete and when it would be a waste of compute resources to start it from thepoint at which the application was interrupted (e.g. system crash due to hardware error).
In principle it is possible to distinguish between user-level checkpointing and kernel-levelcheckpointing. Kernel-level checkpointing must be supported by the underlying operatingsystemwhere the application is running. If this is the case, applications can be checkpointedwithout additional effort to rebuild the application. In contrast, user-level checkpointing re-quires some work from the author of the application so that it supports checkpointing. Theapplication has to be designed so that the calculation algorithm is able to trigger checkpoint-ing regularly or so that it can be triggered outside the application. Some hardware vendorssupport this by providing checkpointing libraries that can be linked against the applicationcode.
Altair Grid Engine does not provide checkpointing for jobs but it does provide the environ-ment in which to integrate jobs already supporting certain levels of checkpointing. Thenecessary object within Altair Grid Engine is called the checkpointing environment.
Commands to Configure Checkpointing Environments
This checkpointing environment can be set up using the following commands:
Grid Engine Administrator’s Guide v 8.7.0 176

3 Special Activities

• qconf -ackpt ckpt_name
This is the command to add a new checkpointing environment. It opens an editor andshows the default parameters for a checkpointing environment. After modifying andsaving necessary values and closing the editor a new environment is created.

• qconf -Ackpt filename|dirname
Add a new checkpointing environment whose specification is stored in a file. If a di-rectory is specified, checkpointing environments for every configuration file in the di-rectory are added.

• qconf -dckpt ckpt_name
Deletes the checkpointing environment with the given name.

• qconf -Dckpt filename|dirname
Deletes a checkpointing environment from the specified file or from every file in agiven directory.

• qconf -mckpt ckpt_name
Opens an editor and shows the current specification of the checkpointing environ-ment with the name ckpt_name. After modifyinging attributes, saving the modifica-tions, and closing the editor the object is modified accordingly.

• qconf -Mckpt filename
Modifies a checkpointing environment from the specified file. If a directory is specified,checkpointing environments for every configuration file in the directory are modified.

• qconf -sckpt ckpt_name
Shows the current specification of the checkpointing environment with the name
ckpt_name.

• qconf -sckptl
Shows the list of names of available checkpointing environments.

• qconf -sckptld [ckpt_list]
Shows a detailed list of all checkpointing environments for an Altair Grid Engine clusteror environments in <ckpt_list>.

Configuration Parameters for Checkpointing Environments

Each checkpointing environment supports the following set of configuration attributes:
Checkpointing environment configuration attributes

Grid Engine Administrator’s Guide v 8.7.0 177

3 Special Activities

Table 78: Checkpointing environment configuration attributes
Attribute Description
ckpt_name The name of the checkpointing environment to be used whenattaching it to queues or when administering its definition. Thisname has to be specified by users who explicitly request acertain type of checkpointing for jobs.
interface The type of checkpointing to be used. Currently, the followingvalues are supported: hibernator The Hibernator kernel-levelcheckpointing interface is used. cpr The SGI kernel-levelcheckpointing is used. cray-ckpt The Cray kernel-levelcheckpointing is assumed. transparent Altair Grid Engineassumes that jobs that are submitted with reference to thischeckpointing environment use a public-domain checkpointingenvironment such as Condor. userdefined Jobs submitted withreference to this type of checkpointing interface use their ownprivate checkpointing method. application-level In this caseall interface commands specified with this object will be used.One exception is the restart_command. Instead of thatcommand the job script itself is restarted.
ckpt_command A command-line type command string to be executed by AltairGrid Engine in order to initiate a checkpoint.
migr_command A command-line type command string to be executed by AltairGrid Engine during a migration of a checkpointing job from onehost to another.
restart_command A command-line type command string to be executed by AltairGrid Engine when restarting a previously checkpointed job.
clean_command A command-line type command string to be executed by AltairGrid Engine in order to clean up after a checkpointingapplication has finished.
ckpt_dir A file system location to which checkpoints of potentiallyconsiderable size should be written.
ckpt_signal A UNIX signal to be sent to a job by Altair Grid Engine to initiatea checkpoint. The value for this field can be either a symbolicname from the list produced via kill -l command or aninteger number which must be a valid signal on the systemused for checkpointing.

Grid Engine Administrator’s Guide v 8.7.0 178

3 Special Activities

Attribute Description
when Defines the points in time when checkpoints are expected to begenerated. Valid values for this parameter are composed of theletters s, m, x and r and any combination thereof without anyseparating character in between. The same letters are allowedfor the qsub -c command which will overwrite the definitions inthe checkpointing environment used. The meaning of theletters is defined as follows: s A job is checkpointed, abortedand if possible, migrated if the corresponding sge_execd isshut down where the job is executed. m Checkpoints aregenerated periodically at the min_cpu_interval defined by thequeue in which a job is running. x A job is checkpointed,aborted and if possible migrated as soon as the job getssuspended (manually or automatically). r A job will berescheduled (not checkpointed) when the host on which the jobcurrently runs goes into an unknown state.

The Altair Grid Engine distribution contains a set of commands that can be used for the pa-rameters ckpt_command, migr_command or restart_command. These commands are locatedin the directory $SGE_ROOT/ckpt.
3.8.4 Enabling Reservations

To prevent job starvation, the Altair Grid Engine system has three capabilities: resourcereservation, backfilling and advance reservation.
A resource reservation is a job-specific reservation created by the scheduler component fora pending job. During the reservation the resources for jobs of lower-priority are blockedso that “job starvation” does not occur.
An advance reservation is a resource reservation completely independent of a particular jobthat can be requested by a user or administrator and is created by the Altair Grid Enginesystem. That advance reservation causes the requested resources to be blocked for otherjobs that are submitted later on.
Backfilling is the process of starting jobs from the priority list despite pending jobs of higherpriority that might own a future reservation with the same requested resources. Backfillinghas meaning only in the context of resource reservations and advance reservations.
Reservations and Backfilling

Resource reservations can be used to guarantee resources dedicated to jobs in job priorityorder. A goodway to explain the problem solvedwith resource reservation and backfilling isthe “large parallel job starvation problem”. In this scenario there is one pending job of highpriority (possibly parallel) named A that requires a large amount of a particular resourcein addition to a stream of smaller jobs of lower-priority B(i) and C(i) requiring a smalleramount of the same resource.

Grid Engine Administrator’s Guide v 8.7.0 179

3 Special Activities

The cluster where the jobs are waiting to be scheduled is already full with running B(i) jobs.

Without a resource reservation, an assignment for A cannot be guaranteed, assum-ing the stream of B(i) and C(i) jobs does not stop - even if job A actually hashigher priority than the B(i) and C(i) jobs. Without a reservation, the schedulersees only the green area in the resource diagram, and it is too small for job A. Thered area (future) is out of the scope of the scheduler. Without a reservation forjob A, the scheduler will schedule all lower-priority jobs, leading to job starvation.

Grid Engine Administrator’s Guide v 8.7.0 180

3 Special Activities

With a resource reservation, the scheduler will plan resource usage for the future. Job Areceives a reservation that blocks lower-priority B(i) jobs and thus guarantees resourceswill be available for A as soon as possible.

Backfilling allows for the utilization of resources blocked due to reservations and advancereservations. Backfilling can take place only if there is an executable job with a prospectiveruntime small enough (like C(0) and C(1)) to allow the blocked resource to be used withoutendangering the reservation of a job with higher priority. The benefit of backfilling is thatof improved resource utilization.

Grid Engine Administrator’s Guide v 8.7.0 181

3 Special Activities

Since resource scheduling requires Altair Grid Engine to look ahead, it is more computeintensive in reservation mode than in non-reservation mode. In smaller clusters the addi-tional effort is certainly negligible as long as there are only a few pending jobs. As a clustergrows however and in particular with a larger number of pending jobs, the additional effortmakes sense. The key with tuning resource reservations is to determine the overall numberthat is made during a scheduler interval.
To accomplish this some command-line switches and scheduling parameters are available:

Table 79: Command-line parameters that influence reserva-tions
Parameter Description
-R This submit option is available for qsub, qrsh, qsh, qlogin and

qalter.This option allows the restriction of resource reservationscheduling only to those jobs that are critical. In the example abovethere is no need to schedule B(i) job reservations for the sake ofguaranteeing the job A resource assignment. The only job thatneeds to be submitted with the -R y is job A. This means all B(i)jobs can be submitted with the -R n without actually endangeringthe reservation for A. Default is -R n if no other is specified.
-now Although it can be requested, reservation is never created forimmediate jobs using -now yes option.

Grid Engine Administrator’s Guide v 8.7.0 182

3 Special Activities

Table 80: Parameters in scheduler configuration that influencereservations
Parameter Description
max_reservation For limiting the absolute number of reservations made during ascheduling interval, the max_reservation parameter in the schedulerconfiguration can be used by Altair Grid Engine administrators. E.g.when max_reservation is set to 20, no more than 20 reservations aremade within a scheduling interval and as a result the additional effortfor reservation scheduling is limited.
MONITOR If MONITOR is added to the params parameter in the schedulerconfiguration, the scheduler records information for each schedulingrun allowing for the reproduction of job resource utilization in the file

$SGE_ROOT/$SGE_CELL/common/schedule.
DURATION_OFFSET If DURATION_OFFSET is set, this overrides the default of 60 seconds thatis assumed as offset by the Altair Grid Engine scheduler whenplanning resource utilization as delta between net job runtimes andgross time until resources are available. A job’s net runtime asspecified with -l h_rt=... or -l s_rt=... or default_durationalways differs from job’s gross runtime due to delays before and afterjob start time. Among these delays before job start, the time until theend of a schedule_interval, the time it takes to deliver a job to

sge_execd, the time prolog and starter_method in queueconfiguration need and the start_proc_args in parallel environmentsmay be affected. The delays after a job’s actual run include delays dueto a forced job termination (notify, terminate_method or variouscheckpointing methods), procedure runs after actual job completionsuch as stop_proc_args in parallel configurations or epilog in queuesand the delay until a new schedule_interval. If the offset is too low,resource reservations can be delayed repeatedly.

3.8.5 Greedy Resource Reservation (Deprecated)

Greedy Resource Reservation does not work in combination with manual preemption.Also the integration with will not be possible for clusters that use Greedy Resource Reser-vation. Administrators have to take care that corresponding features are disabled beforeGreedy Resource Reservation is enabled.

Note

The standard resource reservation implementation in Grid Engine requires expensive andextensive analysis in the scheduler. Because of the overhead, it is not practical for use inmany large scale clusters with large parallel jobs, where it often can only be enabled fora very small number of reserving jobs, if at all. Turning on standard resource reservationon these systems can extend the scheduling run-times to many minutes and the schedulermay time out. In order to support resource reservation for large scale clusters, a simplerresource reservation has been implemented in Grid Engine called Greedy Resource Reser-vation (Greedy-RR).
Grid Engine Administrator’s Guide v 8.7.0 183

3 Special Activities

Greedy-RR is a simplified approach to resource reservation where entire hosts are reservedfor pending parallel jobs requesting resource reservations. The Greedy-RR examines thepending jobs and reserves enough hosts to allow jobs requesting resource reservations torun. Lower-priority jobs which are not reserving resources will not be allowed to use thesehosts ensuring that the higher-priority jobs with resource reservations are not starved bylower-priority jobs. If backfilling is turned on, lower-priority jobs that will not delay the starttime of the higher-priority jobs will be allowed to run. The Greedy-RR algorithm is greedy inthat it will attempt to run the highest priority resource reserving job as quickly as possible.
Greedy-RR is low overhead and requires very little scheduling time.
Standard resource reservation in Grid Engine considers the availability of all resources. Itbuilds schedules for every resource and merges these to determine the earliest possiblereservation. Greedy-RR is much simpler and only considers the availability of hosts withouttaking into consideration all types of consumable and non-consumable resources. Becauseof this, the Grid Engine administrator should take care to choose parallel environmentswithhosts which can run jobs requesting resources. It should also be noted that if the executionof jobs at a site tends to be limited more by consumable resources than execution hostavailability, Greedy-RR may not provide the best scheduling.
Several scheduling configuration parameters can be used to control the operation ofGreedy-RR.
Parameter Description
max_reservation Controls the number of jobs for which Greedy-RRwill reserve PE host resources.
backfilling Controls whether backfilling is allowed for jobswhich will not delay the start time of jobs reservingresources.
greedy_rr If this params attribute is set to true, Greedy-RR willbe used instead of standard resource reservation.
greedy_rr_pe_list This params attribute is a list of parallelenvironments or wild-card parallel environmentsfor which hosts will be reserved by Greedy-RR.Multiple entries should be separated by a colon (:).If this attribute is not specified, then Greedy-RR willreserve hosts for all parallel environments.
greedy_rr_highest_priority If this params attribute set to true, Greedy-RR willconsider jobs requesting resource reservations tobe the most important jobs and will not allownon-resource reserving jobs to use reserved hosts.Greedy-RR will dynamically partition the systemreserving hosts for resource reserving jobs. If thisparameter is used, it is also recommended thatresource reserving jobs be set to a high priority.The default value is false.

Grid Engine Administrator’s Guide v 8.7.0 184

3 Special Activities

Parameter Description
greedy_rr_backfill_non_rr_jobs If this params attribute set to true, Greedy-RR willallow backfilling with non-resource-reserving jobs.If set to false, Greedy-RR will only backfill withlower-priority resource-reserving jobs. The defaultvalue is false.

The following is a list of important items to consider when using Greedy-RR:
• Only parallel jobs get reservations. Serial jobs are not considered. Array jobs are notsupported.
• Entire hosts are reserved. Partial hosts or individual queues cannot be reserved.
• If there are multiple queue instances on a host which might be selected by Greedy-RRand job execution should be prevented by disabling a queue instance, make sure todisable all queue instances on the host.
• Consumable and non-consumable resources are not taken into consideration whenreserving hosts.
• Only jobs submitted with qsub -R yes will reserve resources.
• The qstat -rr command can be used to view those jobs which have reserved re-sources.
• The PE allocation rule $round_robin should be avoided as it can partially fill up hosts.
• Reasonable backfilling requires job run-times to be specified using h_rt, s_rt, d_rt orsetting a default_duration

Advance Reservation

Advance reservations can be compared to the ticket reservation system of a cinema. If agroup of people intends to see a specific movie, someone can reserve a specified numberof tickets. If the tickets are reserved, people can meet when the movie begins. A seat isavailable to them during the movie but they must leave when the movie ends so that thetheater is available again for the next showing.
An advance reservation is defined as a reservation of resources made by the scheduler toaccommodate a user or administrator request. This reservation is made at the beginningindependent of a particular job. After it is created, multiple users may submit jobs to anadvance reservation to use the reserved resources.
Advance reservations have the following characteristics:

• defined start time
• defined duration
• defined set of resources

Grid Engine Administrator’s Guide v 8.7.0 185

3 Special Activities

The absence of one of these characteristics makes it impossible for the Altair Grid Enginescheduler to find the necessary resources to schedule the advance reservation.

An advance reservation has the following states:
Table 82: States of an advance reservation

State Description
r Running. Start time has been reached.
d Deleted. The AR was manually deleted.
x Exited. The end time has been reached.
E Error. The AR became invalid after the start time has beenreached
w Waiting. The AR was scheduled but start time has not beenreached
W Warning. The AR became invalid because resources that werereserved are not available in the cluster any more.

The following commands create or modify advance reservations:
• qrsub
Used to submit a new advance reservation. Returns the identifier {ar_id} that isneeded as parameter for other commands.

• qralter
Command to modify existing advance reservations.

• qrdel {ar_id}
Deletes the advance reservation with ID {ar_id}.

• qrstat
Command to view the status of advance reservations.

Grid Engine Administrator’s Guide v 8.7.0 186

3 Special Activities

• qconf -au {username} arusers
Adds a user with name {username} to the list of users who are allowed toadd/change/delete advance reservation objects.

• qsub -ar {arid}
Submits a job into a specific advance reservation with the ID {ar_id}.

If an AR is submitted with qrsub, the start or end time plus the duration of the job mustbe specified. Other parameters are similar to those of the qsub command. Note that onlyusers who are in the arusers access list have the right to submit advance reservations.
Table 83: qrsub command-line switches

Switch Description
-a {date_time} Defines the activation (start) date and time of the advancereservation. The switch is not mandatory. If omitted, the currentdate and time is assumed. Either a duration or end date and timemust also be specified. Format of -a {date_time} is:

[[CC]YY]MMDDhhmm[.ss] where CC denotes the century, YY the year,
MM the month, DD the day, hh the hour, mm the minutes and ss theseconds when the job can be started.

-A
{account_string}

Identifies the account to which the resource reservation of the ARshould be charged.
-ckpt
{ckpt_name}

Selects the checkpointing environment the AR jobs may request.Using this option guarantees that only queues providing thischeckpointing environment will be reserved.
-d {time} Defines the duration of the advance reservation. The use of thisswitch is optional if an end date and time is specified with -e
-e {date_time} Defines the end date and time of the advance reservation. The useof this switch is optional if -d is requested. Format of {date_time}is the same as for -a.
-he {y_or_n} Specifies the behavior when the AR goes into an error state. Thiswill happen when a reserved host goes into an unknown state, aqueue error happens, or when a queue is disabled or suspended. Ahard error means that as long as the AR is in an error state jobsrequiring the AR will not be scheduled. If a soft error is specified(with -he y), the AR stays usable with the remaining resources. Bydefault, soft error handling is used.
-l {requests} The created AR will provide the given resources specified in

{requests}. Format of {requests} is the same as for qsub -l,except that the consumable attribute of the underlying complexvariable can be overwritten. See man page qrsub.1
-m {occasion} Defines under which circumstances mail is sent to the AR owner orto the users defined via the -M option. {occasion} can be a lettercombination of the letters b, e and a or the letter n where b is abeginning mail, e an end mail, a a mail when the AR goes into anerror state and n will disable sending of any mail. By default, nomail will be sent.
Grid Engine Administrator’s Guide v 8.7.0 187

3 Special Activities

Switch Description
-now {y_or_n} This option impacts the queue selection for reservation. With y,only queues with the type INTERACTIVE assigned will be consideredfor reservation and n is default.
-N {name} The name of the advance reservation.
-pe {name}
{range}

Selects the parallel environment the AR jobs may request. Usingthis option guarantees the queues providing this parallelenvironment will be reserved.
-w {level} Specifies the validation level applied to the AR request. v does notsubmit the AR but prints a validation report whereas e means thatan AR should be rejected if requirements cannot be fulfilled. e isthe default.

3.8.6 Simplifying Job Submission Through the Use of Default Requests

Default requests are job requests that are normally specified at time of submission in theform of command-line switches and arguments to applications such as qsub, qsh or qrsh.
These requests are:

• resource requests for resources that are needed to execute a job successfully (e.g. -l,
-pe)

• descriptions of execution environments defining the context in which jobs are exe-cuted (e.g. -S, -shell, -notify)
• certain hints for the scheduler to help identify resources that can be used for execu-tion (e.g. -q, -pe, -cal, -ckpt)
• parameters that define the importance of a job compared to other jobs (e.g -p, -js)
• identifiers that can be used later on for accounting (e.g. -N, -A) . . .

In the absence of these parameters, additional work is required for the administrator or forthe user who discovers that jobs were not started at all or started using resources that arenot suitable for the job.
Using Altair Grid Engine it is possible to define default requests to solve that problem. Thesedefault requests are used as job requests in the absence of a corresponding request in thesubmission command-line specification.
Locations to set up such default requests are:

• the default request file located in $SGE_ROOT/$SGE_CELL/common• the user default request file .sge_request located in $HOME of the submit user• the user default request file .sge_request located in the current working directorywhere the submit client application is executed.

Grid Engine Administrator’s Guide v 8.7.0 188

3 Special Activities

If these files are available, they will be used for every job that is submitted. They are pro-cessed in the order mentioned above. After that, the submit options embedded in thejob script will be handled as the last switches and parameters that were passed with thecommand line of the submit application. When during this processing the -clear option isdetected, any previous settings are discarded.
The file format of default request files is as follows:

• Blank lines and lines beginning with a hash character (#) are skipped.
• Any other line has to contain one or more submit requests. These requests have thesame name and format as when used with the qsub command.

The following is an example of a default request definition file:
Default Requests File
request a host of architecture sol-sparc64 and a CPU-time of 5hr
-l arch=sol-sparc64,s_cpu=5:0:0
job is not restarted in case of a system crash
-r n

Defining a default request definition file like this and submitting a job as follows:
qsub test.sh

wil have precisely the same effect as if the job were submitted with:
qsub -l arch=sol-sparc64,s_cpu=5:0:0 -r n test.sh

3.8.7 Job Submission Verifiers

Job Submission Verifiers (JSVs) are UNIX processes that communicate with Altair Grid En-gine components to verify jobs before they enter the Altair Grid Engine system. These JSVprocesses decide whether Altair Grid Engine should accept a job, modify the job before it isaccepted or completely reject a job. Accepted jobs will be put into the list of pending jobs.
The Altair Grid Engine admin user can define JSVs to:

• ensure the accuracy of submitted jobs.
• verify additional things that might be needed during job execution which are out ofthe scope of Altair Grid Engine such as certain access rights to hardware or software.
• inform the user of details of job submission, estimated execution times, cluster poli-cies, . . .
• integrate additional software components

Also users submitting jobs can set up JSVs to:
Grid Engine Administrator’s Guide v 8.7.0 189

3 Special Activities

• set up job templates for those jobs that are submitted often.
• ensure that certain environment variables are passed with jobs so that they can beexecuted successfully.

Using JSVs for Ensuring Correctness of Job Submissions

Altair Grid Engine uses two different JSV types that are named Client JSV and Server JSV.Client and Server JSVs have slightly different characteristics:
Table 84: Client/Server JSV Characteristics

Client JSV Server JSV
Can be defined by users that submit jobs and/oradministrators. Only administrators can defineserver JSVs.Always executed on the submit host where theuser tries to submit a job. Server JSV instances are executedon the machine where thesge_qmaster process is running.Are executed under the submit user account withthe environment of the submit user Either executed as admin user orunder an account specified by theadministrator.Client JSVs communicate with the submit clientand therefore have the ability to send messagesto the stdout stream of the corresponding submitclient. This is helpful when administrators wantto notify submit users about certain conditions.

Server JSVs exchange informationwith qmaster users about certainconditions. Logging can be done tothe message file of sge_qmasterprocess.They are terminated after one job verification. Live as long as sge_qmasterprocess is alive and JSV script doesnot change.Has no direct impact on the cluster throughput. Have to be written carefully. Dueto the fact that these JSVs directlycommunicate with qmaster thisJSV type may decrease submissionrate and cluster throughput.

Locations to Enable JSV
To enable the JSV infrastructure, the submit or admin user of an Altair Grid Engine systemhas to prepare one or multiple script or binary applications. The path to JSV must be config-ured within Altair Grid Engine so that the corresponding application will be triggered whena new job tries to enter the system. In principle it is possible to specify the -jsv parame-ter with various submit clients. The jsv_url parameter can be defined within the clusterconfiguration. This allows the specification of JSVs at the following locations:

• -jsv used as command-line parameter with the submit client• -jsv used in the .sge_request file located in the current working directory where thesubmit client is executed• -jsv used in the .sge_request file located in $HOME of the user who tries to submit ajob
Grid Engine Administrator’s Guide v 8.7.0 190

3 Special Activities

• -jsv used in the global sge_request file in $SGE_ROOT/$SGE_CELL/common• jsv_url defined in the cluster configuration.
If JSV is defined at one of the five locations, it will be instantiated and used to verify incomingjobs in a Altair Grid Engine system. JSV 1, 2, 3, and 4 are client JSVs. JSV 5 is a server JSV. Thequestion of how many JSVs are needed in a cluster and where the best location is to set upa JSV depends on the tasks to be achieved by the JSVs. JSV 1, 2, 3 and 4 are started as thesubmitting user, whereas for JSV 5 the administrator can define the user under which theJSV is executed.
In the extreme case where all configuration locations are used to set up JSVs, this results inup to 5 JSV instances. The instance 1 would get the specification of a job as it was definedin the submit client. If it would allow the submission of this job or when the job is acceptedwith some corrections, the new job specificationwould be passed to JSV instance 2. Also thisJSV would have the capacity to accept or modify the job. The result of each JSV verificationor modification process would be passed on to the next instance until JSV 5 either accepts,corrects or rejects the job.
The verification process is aborted as soon as one JSV rejects a job. In this case the submituser will get a corresponding error message. If the job is accepted or corrected, qmasterwill accept the job and put it into the list of pending jobs to be scheduled later on.
JSV Language Support

JSV processes are started as child processes either from a submit client or from thesge_qmaster process. The stdin/stdout/stderr channels of a JSV process are connected tothe parent process via UNIX pipes so that processes can exchange information such asjob specifications, environments and verification results. Due to this common setup it ispossible to write JSVs in any principal programming language.
Perl, TCL, Bourne Shell and Java JSVs are supported out of the box because the Altair Grid En-gine distribution contains modules/libraries that implement the necessary communicationprotocol to exchange data between Altair Grid Engine components and JSVs. The communi-cation protocol is documented so that other language supportsmay be easily implemented.Note that due to performance reasons it is recommended to write Server JSVs in Perl or TCL.Never use Bourne Shell scripts for production systems. Use themonly for evaluation of JSVs.
Predefined language modules for the different scripting languages and example JSV scriptscanbe found in the directory $SGE_ROOT/dist/util/resources/jsv. Thesemodules providefunctions to perform the following tasks:

• To implement the main loop of the script
• To handle the communication protocol to communicate with Altair Grid Engine com-ponents
• To provide access functions to the job submit parameters
• To provide access functions to the job environment specification
• To define reporting functions
• To define logging infrastructure

Grid Engine Administrator’s Guide v 8.7.0 191

3 Special Activities

If these predefinedmodules are used, only two functions have to be written to create a fullyworking JSV script.
01 #!/bin/sh
02
03 jsv_on_start()
04 {
05 return
06 }
07
08 jsv_on_verify()
09 {
10 jsv_accept "Job is accepted"
11 return
12 }
13
14 . ${SGE_ROOT}/util/resources/jsv/jsv_include.sh
15
16 jsv_main

• If this JSV is started, it will source the predefined Bourne Shell language module (line14)
• With the call of jsv_main() function (line 15) themain loop of the JSV script handles thecommunication protocol which triggers two callback functions when a job verificationshould be started
• Function jsv_on_start() (line 3) is triggered to initiate a job verification. In this func-tion certain things can be initialized, or information can be requested from the com-munication partner. In this example the function simply returns.
• The function jsv_on_verify() (line 8) is automatically triggered shortly after

jsv_on_start() has returned. The time in between those two calls is used toexchange job-related information between client/sge_qmaster and the JSV process.
• In this small example the function jsv_on_verify() simply accepts the job withoutfurther verification. This is done using the function jsv_accept() (line 10)
• Note that for a client JSV, the JSV process terminates shortly after jsv_on_verify() is re-turned and before the submit client terminates. For a server JSV, the process remainsrunning since both defined functions will be triggered one after another for each jobrequiring verification.

JSV Script Interface Functions

This section lists the provided interface functions that are defined in script language mod-ules and that can be used with jsv_on_start() and jsv_on_verify() to implement job ver-ification.
Accessing Job Parameters

Grid Engine Administrator’s Guide v 8.7.0 192

3 Special Activities

The following functions can be used to access job specification within a JSV that was definedin the submit environment, the submit client, or switches used in combinationwith a submitclient to submit a job. The param_name parameter that has to be passed to those functionis a string representing a submit client switch. In most cases the name of param_name is thesame as the switch nameused in combinationwith the qsub command. Sometimesmultiple
param_names have to be used to retrieve the information in a JSV that has been defined at thecommand line using only one switch. The functions also accept some pseudo-param_namesto find more detailed information about the submit client. A full list of param_names can befound in the following sections.

• jsv_is_param(param_name)
Returns information about whether specific job parameters are available for the jobbeing verified. Either the string true or false will be returned.

• jsv_get_param(param_name)
Returns the value of a specific job parameter. This value for a param_name is only avail-able if jsv_is_param(param_name) returns true. Otherwise an empty string will be re-turned.

• jsv_set_param(param_name, param_value)
This function sets the job parameter param_name to param_value. If param_value is anempty string, the corresponding job param_name will be deleted, similarly to using thefunction jsv_del_param(param_name). As a result the job parameter is not availablesince the corresponding command-line switch is not specified during job submission.For boolean parameters that only accept the values yes and no as well as for the pa-rameters c and m, it is not allowed to pass an empty string as param_value.

• jsv_del_param(param_name)
Deletes the job parameter param_name from the job specification as if the correspond-ing submit switch had not been used during submission.

Examples

01 jsv_on_verify()
02 {
03 ...
04
05 if [`jsv_is_param b` = "true" -a `jsv_get_param b` = "y"]; then
06 jsv_reject "Binary job is rejected."
07 return
08 fi
09
10 ...
11 }

The script above is an excerpt of a jsv_on_start() function (Bourne shell):
• The first part of the expression in line 5 tests whether the -b switch is used during thejob submission.

Grid Engine Administrator’s Guide v 8.7.0 193

3 Special Activities

• The second part of the expression tests whether the passed parameter is y

• If a binary job is submitted, the corresponding job will be rejected in line 6.
• The error message to be returned by qsub is passed as a parameter to jsv_reject()

01 if ["`jsv_get_param pe_name`" != ""]; then
02 slots=`jsv_get_param pe_min`
03 i=`expr $slots % 16`
04
05 if [$i -gt 0]; then
06 jsv_reject "Parallel job does not request a multiple of 16 slots"
07 return
08 fi
09 fi

The section above can be used in jsv_on_start() function (Bourne shell):
• Line 1 checks whether -pe switch was used at command line
• The pe_min value contains the slot specification. If a job was specified e.g with qsub

-pe pe_name 17, pe_min will have a value of 17.
• Line 3 calculates the remainder of the division.
• Line 5 uses this remainder to see whether the specified slots value was a multiple of16.
• The job is rejected in line 6.

Accessing List-based Job Parameters

Some job parameters are lists that can containmultiple variables with an optional value. Ex-amples for those parameters include job context specifications, resource request lists andrequested queue lists. To access these parameters and their values, the following functionshave to be used:
• jsv_sub_is_param(param_name, variable_name)
This function returns true if the job parameter list param_name contains a variable withthe name variable_name and false otherwise. false can also indicate that the param-eter list itself is not available. The function jsv_is_param(param_name) can be used tocheck whether the parameter list is available.

• jsv_sub_get_param(param_name, variable_name)
This function returns the value of variable_name in the parameter list param_name.For list elements that have no value, an empty string will be returned, as well as forthe following param_names: hold_jid, M, masterq, q_hard, q_soft. For the param_names
l_hard and l_soft the value is optional. The absence of a value does not indicatethat variable_name is not contained in the list. jsv_is_sub_param(param_name) canbe used to check this.

Grid Engine Administrator’s Guide v 8.7.0 194

3 Special Activities

• jsv_sub_add_param(param_name, variable_name, variable_value)
This function adds a variable_name/variable_value entry into the parameter list
param_name. If variable_name is already contained in that list the corresponding valuewill be replaced. variable_value can be an empty string. For certain param_namesthe variable_value must be an empty string. Find the list above in the section
jsv_sub_is_param(param_name, variable_name)

• jsv_sub_del_param(param_name, variable_name)
Deletes a variable and if available the corresponding value from the list with the name
param_name.

Example

01 l_hard=`jsv_get_param l_hard`
02 if ["$l_hard" != ""]; then
03 has_soft_lic=`jsv_sub_is_param l_hard soft_lic`
04
05 if ["$has_soft_lic" = "true"]; then
06 jsv_sub_add_param l_hard h_vmem 4G
07 fi
08 fi

• Line 1 returns the value of the -l command-line switch.
• If the value for that parameter is not empty, there is at least one resource requestpassed during job submission.
• Line 3 checks whether it contains the soft_lic resource request.
• has_soft_lic will be set to true in this case (line 5).
• If this was specified, h_vmem will be set to 4G (line 6).

Preparing a Job Verification
This function can be used in jsv_on_start() to request more detailed information for thejob verification process before the verification is started:

• jsv_send_env()
This function canbeusedonly in jsv_on_start(). If it is used there, the full job environ-ment information will be available in jsv_on_verify() for the job that should be veri-fied next. This means that the functions jsv_is_env(), jsv_get_env(), jsv_add_env()and jsv_mod_env() can be used with jsv_on_verify() to access, modify, or deleteenvironment-related information in the job specification. Job environment values canbe specified by using the -v or -V switches during job submission. By default, the jobenvironment is not passed to JSVs for performance reasons. Job environments can be-come large (10K or more). Automatically transferring it for each job would slow downthe executing components. Also note that the data in the job environment cannot beverified by Altair Grid Engine and this might therefore contain data which could bemisinterpreted in the script environment and cause security issues.

Grid Engine Administrator’s Guide v 8.7.0 195

3 Special Activities

Logging Status

The following JSV logging functions are available.
• jsv_log_info(message)
The passed message string is transferred to the submit client invoking the executingclient JSV, or it will be sent to the sge_qmaster process when using a server JSV. Sub-mit clients will then write the message to the stdout stream of the submit application,whereas with a server JSV the message is written as an info message into the messagefile of sge_qmaster.

• jsv_log_warning(message)
The passed message string will be transferred to the submit client that invoked the ex-ecuting client JSV, or it will be sent to the sge_qmaster process when using a serverJSV. Submit clients will then write the message to the stdout stream of the submit ap-plication, or with a server JSV the message is written as a warning message into themessage file of sge_qmaster.

• jsv_log_error(message)
The passed message string will be transferred to the submit client that invoked the exe-cuting client JSV, or it will be sent to the sge_qmaster process when using a server JSV.Submit clients will then write the message to the stdout stream of the submit applica-tion, or with a server JSV the message is written as an error message into the messagefile of sge_qmaster.

Example

01 l_hard=`jsv_get_param l_hard`
02 if ["$l_hard" != ""]; then
03 context=`jsv_get_param CONTEXT`
04 has_h_vmem=`jsv_sub_is_param l_hard h_vmem`
05
06 if ["$has_h_vmem" = "true"]; then
07 jsv_sub_del_param l_hard h_vmem
08 if ["$context" = "client"]; then
09 jsv_log_info "h_vmem as hard resource requirement has been deleted"
10 fi
11 fi
12 fi

• Line 3 identifies whether the JSV is a client or server JSV.
• For a server JSV (line 8) . . .
• . . . the JSV prints the log message "h_vmem as hard resource requirement has been

deleted". This message will appear on the stdout stream of the submit client applica-tion.

Grid Engine Administrator’s Guide v 8.7.0 196

3 Special Activities

Reporting Verification Result
One of the following functions has to be called at the end of the jsv_on_verify() functionafter the job verification is done and just before jsv_on_verify() returns.

• jsv_accept(message)
A call to this function indicates that the job that is currently being verified should beaccepted as it was initially provided. All jobmodifications thatmight have been appliedbefore this function was called will be ignored. The message parameter has to be acharacter sequence or an empty string. In the current implementation this string isignored and it will appear only if logging for JSV is enabled.

• jsv_correct(message)
The job that is currently being verified when this function is called will be accepted bythe current JSV instance. Modifications that were previously applied to the job will becommitted. The job will be passed either to the next JSV instance if there is one, orto sge_qmaster so that it can be added to the masters data store when the functionreturns. The message parameter has to be a character sequence or an empty string.In the current implementation this string is ignored and it will appear only if loggingfor JSV is enabled.

• jsv_reject(message) or jsv_reject_wait(message)
The job currently being verified is rejected. The message parameter has to be a char-acter sequence or an empty string. message will be passed as error message to theclient application that tried to summit the job. Command-line clients such as qsub willprint this message to notify the user that the submission has failed.

Accessing the Job Environment
The following function can be used to access the job environment that will be madeavailable when the job starts. At the command line this environment is formed with thecommand-line switches -v and -V. The function can only be used when jsv_send_env()was previously called in jsv_on_start().

• jsv_is_env(env_name)
Returns true when an environment variable with the name env_name exists in the jobcurrently being verified. In this case jsv_get_env(env_name) can be used to retrievethe value of that variable.

• jsv_get_env(env_name)
Returns the value of a variable named env_name. If the variable is not available anempty string will be returned. To distinguish non-existing variables and empty vari-ables the function jsv_is_env(env_name) can be used.

• jsv_add_env(env_name, env_value) and jsv_mod_env(env_name, env_value)
These functions add or modify an environment variable named env_name. The valueof the variable will be env_value. If jsv_add_env() is used on a variable that alreadyexists, the value is simply overwritten; when jsv_mod_env() is used on a variable thatdoes not already exist, it is silently added. env_name can be an empty string; in thiscase only the variable is set.

Grid Engine Administrator’s Guide v 8.7.0 197

3 Special Activities

• jsv_del_env(env_name, env_value)
Removes env_name from the set of environment variables that will be exported to thejob environment when the job is started.

Parameter Names of JSV Job Specifications

JSV functionality allows it to change various aspects of jobs that are submitted to Altair GridEngine systems. This can be donewith predefined JSV script interface functions. Those func-tions require valid parameter names and corresponding values. The table below mentionsall supported parameter names and describes them in more detail.
Table 85: JSV Job Parameters

Parameter Description
a If a job has a specific start time and date at which it is eligiblefor execution (specified with qsub -a at the command line),the corresponding value is available in JSV as a parameterwith the name a. The value of this parameter has thefollowing format: [[CC]YY]MMDDhhmm[.ss] where CC denotesthe century, YY the year, MM the month, DD the day, hh thehour, mm the minutes and ss the seconds when the job can bestarted.
ac The value for the ac parameter represents the job context ofa job as it is specified at the command line with thecommand-line switches -ac, -dc and -sc. The outcome of theevaluation of all three switches will be passed to JSV as thelist parameter named ac. It is possible within JSV scripts tomodify this list with the jsv_sub_*_param() functions.
ar The ar parameter is available in JSV if an advance reservationnumber was specified during the submission of a job. At thecommand line this is done with the -ar switch. The value of

ar can be changed in JSV as long as the new value is a validadvance reservation id.
b If the parameter named b is available in JSV this shows that ajob was submitted as a binary job e.g with -b switch at thecommand line. The value in this case is yes. The absence ofthis parameter indicates that a non-binary job was submitted.Independent of whether or not the parameter is available itcan be set or changed.

Grid Engine Administrator’s Guide v 8.7.0 198

3 Special Activities

Parameter Description
c_interval c_occasion The command-line switch -c of qsub can be used to definethe occasions when a checkpointing job should becheckpointed. If a time interval is specified, this value will beavailable in JSV as a parameter with the name c_intervaland when certain occasions are specified through characters,this letter is available through the parameter c_occasion. Isis possible to change both values in JSV. Note that a changeof c_occasion will automatically override the current value of

c_interval and vice versa.Valid values for c_occasion are theletters n, s, m and x where n disables checkpointing, s triggersa checkpoint when an execution daemon is shut down, mcheckpoints at the minimum CPU interval and x checkpointswhen the job gets suspended.The time value for c_occasionhas to be specified in the format hh:mm:ss where hh denoteshours, mm denotes minutes and ss denotes the seconds of atime interval between two checkpointing events.
ckpt The ckpt parameter is set for checkpointing jobs andcontains the name of the checkpointing environment thatcan be defined at the command line via the -ckpt switch.
cwd The value of the cwd parameter is, if available, the path to theworking directory where the submit client was started. At thecommand line this is set using the -cwd switch.
display The value of display is used by xterm to contact the X server.At the command line the value for this parameter can be setin qsh and qrsh via the -display switch. The format of thedisplay value must start with a hostname (e.g hostname:1).Local display names (e.g. :13) cannot be used in gridenvironments. Values set with the display variable in JSV willoverwrite settings from the submission environment andenvironment variable values specified with -v command-lineoption.
dl The dl parameter is available if a deadline time was specifiedduring the submission of a job. At the command line this canbe done with the -dl switch. If available the value will havethe same format as the a parameter that specifies the starttime of a job.
e The e parameter defines or redefines the path used for thestandard error stream of a job. At the command line thevalue for this parameter can be defined via the -e switch.
h The value of the h parameter indicates that a job wassubmitted in a user hold state (e.g. with qsub -h). In this casethe parameter is available and it will be set to u. To changethis the parameter can be set to n.

Grid Engine Administrator’s Guide v 8.7.0 199

3 Special Activities

Parameter Description
hold_jid The hold_jid parameter contains job dependencyinformation for a job. It is available when a job wassubmitted with the -hold_jid command-line switch. Ifavailable the list contains references in the form of job ids,job names or job name patterns. Referenced jobs in this listhave to be owned by the same user as the referring job.
hold_jid_ad The hold_jid_ad parameter defines or redefines array jobinterdependencies. It is available when a job was submittedwith -hold_jid_ad command-line switch. If available the listcontains references in form of job ids, job names or jobname patterns. Referenced jobs in this list have to be ownedby the same user as the referring job.
i The i parameter defines or redefines the path used for thestandard input stream of a job. At the command line thevalue for this parameter can be defined via the -i switch.
j Similar to the -j command-line switch, the j parameterdefines or redefines whether the standard error streamshould be merged into the output stream of a job. In thiscase the parameter is available and set to y. To change this,the value can be set to n.
jc Defines or redefines the job class that should be used tocreate the new job.
js Defines or redefines the job share of a job relative to otherjobs. If the corresponding -js parameter was not specifiedduring submission of a job, the default job share is 0. In thiscase the parameter is not available in JSV. Nevertheless it canbe changed.
l_hard l_soft At the command line job resource requests are specified withthe -l switch. This switch can be used multiple times, and incombination with the switches -hard and -soft to expresshard and soft job resource requirements. The sum of all hardand soft requests a job has will be available in JSV with thetwo parameters l_hard and l_soft. Note that if regularexpressions or shortcut resource names were used in thecommand line, these expressions will also be passed to JSV.They will not be expanded. It is possible in JSV scripts tomodify these resource lists with the jsv_sub_*_param()functions.
m The value of the m parameter defines or redefines when GridEngine sends mail to the job owner. Format is similar to thecommand-line switch -m of the qsub command. n means thatthere is no mail sent and different letter combinations of theletters b, e, a and s can be used to define when mail is sentwhere b means that mail is sent at the beginning of a job, e atthe end of a job, and a when the job is aborted orrescheduled.

Grid Engine Administrator’s Guide v 8.7.0 200

3 Special Activities

Parameter Description
M M is the list of mail addresses to which the Altair Grid Enginesystem sends job-related mails. It is possible in JSV scripts tomodify these resource lists with the jsv_sub_*_param()functions.
masterq masterq parameter defines candidate queues that canbecome the master queue if the submitted job is a paralleljob. At the command line this is specified with the -masterqcommandline switch. In JSV the list can be accessed with the

jsv_sub_*_param() script functions.
notify Jobs where the notify parameter is available in JSV andwhere it is set to y will receive a notify signal immediatelybefore a suspend or kill signal is delivered. If -notify was notused during submission of a job, the notify parameter willnot be available.
now Not available in JSV.
N The value of N is the job name of the job to be submitted.
o The o parameter defines or redefines the path used for thestandard output stream of a job. At the command line thevalue for this parameter can be defined via the -o switch.
p The p parameter defines or redefines job priority relative toother jobs. It is only available if the value is not equal to 0.Allowed values for this parameter are integer values in therange between -1023 and 1024.
pe_name When parallel jobs are submitted with qsub, the -pecommand
pe_min -line switch has to be specified to define which parallelenvironment
pe_max should be used and which slots are needed. The parameters

pe_name, pe_min and pe_max show parts of that specification.
pe_name is the name of the parallel environment. pe_min and
pe_max specify the biggest and smallest slot number used inthe slot specification. If multiple pe ranges are specified pe_nwill contain the number of ranges, pe_min_0 the minimum ofthe first range, pe_max_0 the maximum of the first range,
pe_min_1 the minimum of the second range, etc.

Grid Engine Administrator’s Guide v 8.7.0 201

3 Special Activities

Parameter Description
pty This parameter is only available in Altair Grid Engine 8.0.1and above (see UNIVA_EXTENSIONS pseudo parameterbelow). The -pty switch of qrsh and qsh enforces that thesubmitted job is started in a pseudoterminal. Thisinformation will be exported to client and server JSV scriptsvia the parameter named pty. If the command-line switch isomitted, then this parameter has the value u which meansunset. Client applications and the executed job will use thedefault behavior. y means that the use of a pseudoterminalis enforced and n that no pseudo- terminal will be used. Thisparameter can be changed in JSV scripts. This change willinfluence the client applications and the executed job as if thecorresponding command-line switch had been used directly.
P Variable that holds the name of the project to which a job isassigned. A change to this value will overwrite the valuespecified with the -P command-line parameter.
q_hard q_soft The -q switch for the command-line application can becombined with the -hard and -soft switches. As a result theuser specifies lists of hard and soft cluster queue, queuedomain and queue instance requests. Within JSV those listsare available via the parameters q_hard and q_soft. Both ofthem can be changed using the jsv_sub_*_param() scriptfunctions.
R If the R parameter is available and set to y, a reservation willbe created for the corresponding job. The request forreservation can be undone in JSV when the parameter is setto n.
r Jobs can be marked to be rerunnable with the -rcommand-line switch. If this has been done, the r parameteris available and set to y. To overwrite this the value can bechanged to n.
shell The parameter shell is defined and set to y if a commandshell should be used to start the job. To disable this JSV valuehas to be changed to n.
sync This parameter is only available in Altair Grid Engine 8.0.1and above (see UNIVA_EXTENSIONS pseudo parameter below).When a command-line application is used with the -synccommand-line switch, the parameters with the name syncwill be available in client and server JSV, and it will be set to y.The sync parameter is a read-only parameter in JSV. Thismeans that it is not possible to influence the behavior of thecommand-line client by modifying this parameter in JSV.
S The S parameter specifies the interpreting shell for the job.
t_min t_max t_setp The -t parameter of qsub submits an array job. The taskrange specification is available in JSV via three parameters:t_min,t_maxandt_step‘. All three values can be changed.

Grid Engine Administrator’s Guide v 8.7.0 202

3 Special Activities

Parameter Description
terse This parameter is only available in Altair Grid Engine 8.0.1and above (see UNIVA_EXTENSIONS pseudo parameter below).When a command-line application is used with the

terse-switch then the parameter named terse will beavailable in client and server JSV scripts and it will be set to y.If this parameter is set to n, the submit client will print theregular “Your job . . . ” message instead of the job ID. Theparameter value can be changed in JSV scripts.
v There is no v parameter in JSV. If information concerning theresulting job environment is needed in JSV, this has to berequested explicitly. When using the JSV script interface, thiscan be done with a call of jsv_send_env() in jsv_on_start().After that the jsv_*_env() functions can be used to accessthe job environment.
V This parameter is only available in Altair Grid Engine 8.0.1and above (see UNIVA_EXTENSIONS pseudo parameter below).The V parameter will be available in client and server JSVscripts and it will have the value y when the -V command-lineswitch was used during the submission of a job. Thisindicates that the full set of environment variables that wereset in the submission environment can be accessed from JSV.If this parameter is not available or when it is set to n, only asubset of the user environment can be accessed in JSVscripts. Only those environment variables will be availablethat were passed with the -v command line parameter.
wd See cwd

In addition to job parameters JSV provides a set of pseudo parameters
Table 86: JSV Pseudo Parameters

Parameter Description
CLIENT The value of the CLIENT is either qmaster for a server JSV, or forclient JSVs the name of the submit client that tries to submit thejob. Valid client names are qsub, qrsh, qsh, qlogin and qmon. Incase of DRMAA clients the string drmaa is used. This value isread-only. It cannot be changed by JSV.
CMDARG{i} Command-line arguments of the job script will be available in JSVvia multiple CMDARG{i} parameters, where {i} is replaced with bythe number of the position where the argument should appear.

{i} is a number in the range from 0 to CMDARGS - 1. This meansthat the first argument will be available through the parameter
CMDARG0.

CMDARGS The value is an integer number representing the number ofcommand-line arguments that should be passed to the job when itis started.

Grid Engine Administrator’s Guide v 8.7.0 203

3 Special Activities

Parameter Description
CMDNAME For a binary submission, CMDNAME contains the command name ofthe binary to be executed. For non-binary jobs the full path to thejob script is specified. In Altair Grid Engine systems it is possible tomodify CMDNAME in client and server JSV scripts. CMDNAME canbe set to a script name or to a command name for a binarysubmission. If script submission should be changed to binarysubmission or binary submission should be changed to scriptsubmission, the b parameter has to be changed in JSV before theCMDNAME parameter is changed. for a script submission thescript has to be accessible on the master machine if the CMDNAMEparameter is changed in a server JSV. Submission parameters thatare embedded in the new script file will be ignored.
CONTEXT The CONTEXT can have two values. client or master depending onwhich client host the JSV is currently executed. It is not possible tochange this value.
GROUP The value of GROUP is the primary group name of the user whosubmitted the job. Cannot be changed via JSV.
SUBMIT_HOST This parameter is only available in Altair Grid Engine 8.0.1 andabove (see UNIVA_EXTENSIONS pseudo parameter below). In serverJSV’s the read-only parameter SUBMIT_HOST is available. Thisparameter contains the hostname where the submit application isexecuted.
JOB_ID This variable is not available when CONTEXT is client (client JSV).For a server JSV the value of JOB_ID is the job number the job willget when it is accepted by the Altair Grid Engine system. This valuecannot be changed via JSV.
UNIVA_EXTENSIONS The JSV parameter named UNIVA_EXTENSIONS is available in AltairGrid Engine 8.0.1 and above. This read-only parameter can beused in client and server JSV scripts to detect whether a certain setof JSV parameters can be accessed that are only available in theUniva version of Grid Engine. If this parameter is not available orwhen it is set to n, these extensions to JSV are missing (OpenSource version of Grid Engine). In this case it is not possible toaccess the following parameters: pty, sync, terse, V and

SUBMIT_HOST.
USER The value of USER is the UNIX username of the user who submittedthe job. Cannot be changed by JSV.
VERSION Shows the VERSION of the implementation of the JSVcommunication protocol. VERSION is always available in JSV and itis not possible to change the value. The format of the value is

{major}.{minor}. Since the first implementation of JSV thecommunication protocol has not been changed so that the current
VERSION is still 1.0

Using JSVs for Integrating Altair Grid Engine With Other Facilities

Script-based JSVs are the best compromise of performance and flexibility for aligning jobs

Grid Engine Administrator’s Guide v 8.7.0 204

3 Special Activities

according to the needs that predominate in a cluster. Other facilities that might need to beintegrated with Altair Grid Engine might have different requirements. Such facilities mightrequire that:
• a special programming language is used.
• certain tasks should be achieved that cannot be done easily in a script language.
• performance has to be optimized so that cluster throughput can be increased.

To be able to do so Altair Grid Engine provides information about the communication pro-tocol that is used between active components so that administrators are able to write JSVsin any programming language. Contact us to receive more detailed information.
The JSV protocol has meanwhile been implemented for the Java programming language.JAR files and documentation are part of the distribution. Find it in the directories
$SGE_ROOT/util/resources/jsv and $SGE_ROOT/lib.
3.8.8 Enabling and Disabling Core Binding

The core binding feature can be enabled and disabled at the host level. In a default AltairGrid Engine installation, it is turned on for Linux hosts, while on Solaris architectures it mustbe enabled by the administrator. The reason for this is that the functionality differs onthese two supported architectures. On Linux a bitmask is set for a process, which tells theoperating system scheduler not to schedule the process to specific cores. The net result isa more streamlined process. The scheduler does not prevent other processes from beingscheduled on the specific cores (nevertheless it avoids this). On a Solaris processor setsare used. They require root privileges and prevent other processes (even OS processes)from running. Hence it would be possible for the user to occupy cores, even when theapplication is granted just one slot. In order to avoid this, the administrator must ensurethat the number of cores is aligned with the number of granted slots. This can be done withadvanced JSV scripts.
To turn this feature on, add ENABLE_BINDING=true to the execd_params on the specific exe-cution host. The feature is explicitly disabled with ENABLE_BINDING=false.
Example: Enabling Core Binding on Host host1

> qconf -mconf host1
mailer /bin/mail
...
execd_params ENABLE_BINDING=true

3.9 Ensuring High Availability

For an introduction to the shadowmaster concept see also Introduction Guide -> Conceptsand Components -> SGE_SHADOWD and the Shadow Master Hosts.

Grid Engine Administrator’s Guide v 8.7.0 205

3 Special Activities

With one Altair Grid Engine installation or multiple instances, sge_shadowd can monitorsge_qmaster availability and during sge_qmaster outages, start a new sge_qmaster on ashadow host.
The shadow master functionality uses the following algorithm: * during regular operationsge_qmaster writes a heartbeat file at regular intervals (written every 30 seconds to file
<qmaster spool dir>/heartbeat)

• all sge_shadowd instances monitor the heartbeat file
• if a sge_shadowd instance detects that the heartbeat file has not changed for a certaintime (see Tuning the sge_shadowd, it tries to take over the qmaster role, according tothe following algorithm:

– avoid multiple instances of sge_shadowd takeover (via a lock file)
– check whether the old qmaster is still down
– start up sge_qmaster

3.9.1 Prerequisites

Implementing high availability via sge_shadowd requires a specific setup regarding thesge_qmaster spool directory and spooling method:
• all shadow hosts must be administrative hosts
• the sge_qmaster spool directory must be shared among the master host and all theshadow hosts
• for qmaster spooling, the following options can be used:

– classic spooling on a shared file system
– LMDB spooling on a shared file system providing locking capabilities, e.g. NFS4 orLustre. The master host and all shadow hosts must have the same architecture(Altair Grid Engine architecture string)

See also Installation Guide -> Selecting a File System for Persistency Spooling of Status Data- Selecting a File System for Persistency Spooling of Status Data for selecting the spoolingmethod and file system.
3.9.2 Installation

For the installation of shadow hosts see Installation Guide -> Shadow master host installa-tion - Shadow master host installation.

Grid Engine Administrator’s Guide v 8.7.0 206

3 Special Activities

3.9.3 Testing sge_shadowd Takeover

After doing the shadow host installation on one or multiple shadow hosts, make sure theshadowd takeover actually works.
To test shadowd takeover, simulate the outage of the sge_qmaster or of the master hostby either:

• unplugging the network interface of the master host
• suspending or terminating the sge_qmaster process (do not gracefully shut downsge_qmaster - in this case, sge_shadowd will not take over)

Monitor Altair Grid Engine functionality by calling qstat at regular intervals - qstat will failuntil one of the shadow hosts has taken over control.
When the shadowdmechanismhas startedup a shadowmaster, check $SGE_ROOT/$SGE_CELL/common/act_qmaster- it will contain the name of the new master host.
Monitor with qhost whether all execution hosts start using (register with) the sge_qmasteron the shadow host.
3.9.4 Migrating the Master Host Back After a Takeover

It may be necessary to manually migrate sge_qmaster to a different host, e.g.
• when some maintenance on the master host is done, migrate sge_qmaster to one ofthe shadow hosts
• after a shadow host takes over, migrate sge_qmaster back to the original master host

As root on the target sge_qmaster host, call $SGE_ROOT/$SGE_CELL/common/sgemaster
-migrate

This command:
• shuts down the running sge_qmaster
• starts up a sge_qmaster instance on the local host.

3.9.5 Tuning the sge_shadowd

Timing behavior for sge_shadowd can be configured via 3 environment variables:
• SGE_CHECK_INTERVAL: Controls the interval in which sge_shadowd checks the heart-beat file. The default is 60 seconds. sge_qmaster writes the heartbeat file every 30seconds.
• SGE_GET_ACTIVE_INTERVAL: When the heartbeat file has not changed in this numberof seconds, sge_shadowd will try to take over. Default is 240 seconds.

Grid Engine Administrator’s Guide v 8.7.0 207

3 Special Activities

• SGE_DELAY_TIME: If a sge_shadowd tried to take over, but detected that anothersge_shadowd already started the takeover procedure, it will wait for SGE_DELAY_TIMEseconds until it takes up checking the heartbeat file again. Default is 600 seconds.
See also the man page sge_shadowd.8.
Be careful tuning these parameters. Setting the values too small may result in sge_shadowtaking over in situations where the sge_qmaster has short outages, e.g. short network out-ages or delays in propagating the contents of the heartbeat file from the master host toshadow hosts due to high load on the NFS server.
Recommendation:

• Start with the default values. This will result in a shadowd takeover that happenswithin 6 minutes.
• Reducing the SGE_CHECK_INTERVAL is safe, e.g. setting it to 10 seconds can reducethe takeover time by 50 seconds.
• Most benefit can come from tuning the SGE_GET_ACTIVE_INTERVAL parameter. Set-ting the value too low can result in sge_shadowd trying to take over when short out-ages occur, e.g. due to short network or NFS server outages or overload. Setting it forexample to 60, and setting SGE_GET_ACTIVE_INTERVAL to 10 seconds can result in ashadow host takeover time of 70 seconds.
• Tuning the SGE_DELAY_TIME should usually not be necessary - it would be used toreduce the time interval for a second shadow host takeover if the first shadow hostfails to take over. Be careful tuning this parameter. It should never be lower thanthe time required for starting sge_qmaster in the cluster. Sge_qmaster startup timedepends on cluster size and the number of jobs being registered in the cluster. In abig cluster with thousands of jobs being registered, the sge_qmaster startup time canbe in the magnitude of minutes.

3.9.6 Troubleshooting

How do I know which host is currently running sge_qmaster?

Thenameof the host running sge_qmaster canbe found in the $SGE_ROOT/$SGE_CELL/common/act_qmasterfile.
Where do I find run time information for active shadow daemons?

Every sge_shadowd writes run time information into its own message file, which can befound at <qmaster spool dir>/messages_shadowd_<hostname>. It contains informationabout the running sge_shadowd, e.g. its version, as well as monitoring information andreports about shadow host activity, e.g.
05/02/2011 11:19:16| main|halape|I|starting up UGE 8.0.0 beta (lx-x86)
05/02/2011 11:40:18| main|halape|E|commlib error: got select error (No route to host)
05/02/2011 11:40:18| main|halape|W|starting program: /scratch/peter/clusters/shadow/

bin/lx-x86/sge_qmaster

Grid Engine Administrator’s Guide v 8.7.0 208

3 Special Activities

Startup of sge_qmaster on a shadow host failed. Where do I find information for an-
alyzing the problem?
The file <qmaster spool dir>/messages_qmaster.<hostname> contains the time whensge_shadowd on <hostname> started a sge_qmaster, as well as sge_qmaster output tostdout and stderr at startup time.

3.10 Utilizing Calendar Schedules

Calendar objects within Altair Grid Engine are used to define time periods where certaincluster resources are disabled, enabled, suspended or unsuspended. Time periods can bebe defined on a time of day, day of week or day of year basis.
Defined calendar objects can be attached to cluster queues or parts of cluster queues sothat they automatically change their state on behalf of that attached calendar.
Users submitting jobs can request queues with a certain calendar attached.
3.10.1 Commands to Configure Calendars

To configure a calendar, the qconf command can be used. This provides a number ofcalendar-related options:
• qconf -acal calendar_name
The ‘add calendar’ options adds a new calendar configuration named calendar_nameto the cluster. When this command is triggered, an editor with a template calendarconfiguration will appear.

• qconf -Acal filename|dirname
This command adds a calendar specified in filename to the Altair Grid Engine system.If a directory is specified, calendars for every configuration file in the directory areadded.

• qconf -dcal calendar_name
The ‘delete calendar’ option deletes the specified calendar.

• qconf -Dcal filename|dirname
Delete a calendar from the specified file or from every filename in a given directory.

• qconf -mcal calendar_name
The ‘modify calendar’ option shows an editor with an existing calendar configurationfor the calendar named calendar_name.

• qconf -Mcal filename|dirname
Modify a calendar according to a configuration file. If a directory is specified, calendarsfor every configuration file in the directory are modified.

• qconf -scal calendar_name
The ‘show calendar’ option displays the configuration of the calendar calendar_name.

Grid Engine Administrator’s Guide v 8.7.0 209

3 Special Activities

• qconf -sscal
The ‘show calendar’ list option shows all configured calendars for an Altair Grid Enginesystem

• qconf -scalld [<cal_list>]
Shows a detailed list of all calendars for an Altair Grid Engine cluster or calendars in
<cal_list>.

3.10.2 Calendars Configuration Attributes

A calendar configuration uses the following configuration attributes:
Table 87: Calendar configuration attributes

Attribute Description
calendar_name The name of the calendar to be used when attaching it to queues orwhen administering the calendar definition.
year The status definition on a day of year basis. This field generallyspecifies the days on which a queue to which the calendar isattached, will change according to a set state. The syntax of the yearfield is defined as follows:

NONE
year_day_range_list = daytime_range_list [= state]
year_day_range_list [= daytime_range_list] = state
state* NONE means no definition is made on a yearly basis.* If a definition is made on a yearly basis, at least one of the
year_day_range_list, daytime_range_list or state have to bepresent.* switching the queue to ‘off’ by disabling it assumes the state isomitted.* the queue is enabled for days that are neither referenced implicitlyby omitting the year_day_range_list nor explicitly.The syntactical components are defined as follows:
year_day_range_list := yearday-yearday | yearday, ...
daytime_range_list := hour[:minute][:second]-
hour[:minute][:second], ...
state := on | off | suspended
year_day := month_day.month.year
month_day := 1 | 2 | ... | 31
month := jan | feb | ... | dec | 1 | 2 | ... | 12
year := 1970 | 1971 | ... | 2037

week The status is defined on a day of the week basis. This field generallyspecifies the days of a week and the times at which a queue to whichthe calendar is attached, will change to a certain state. The syntax ofthe week field is defined as follows:
NONE
week_day_range_list[=daytime_range_list][=state]

Grid Engine Administrator’s Guide v 8.7.0 210

3 Special Activities

Attribute Description
[week_day_range_list=]daytime_range_list[=state]
[week_day_range_list=][daytime_range_list=]state} ...Where* NONE means, no definition is made on the week basis* if a definition is made on a week basis, at least one of
week_day_range_list, daytime_range_list or state always has to bepresent.* every day in the week is assumed if week_day_range_list is omitted.* syntax and semantics of daytime_range_list and state are identicalto the definition given for the year field above.* the queue is assumed to be enabled for days neither referencedimplicitly by imitating the week_day_range_list nor explicitly. Whereweek_day_range_list is defined asweek_day_range_list :=
week_day-week_day | week_day, week_day := mon | tue | wed |
thu | fri | sat | sun withweek_day_range_listtheweek_day‘identifiers must be different.

Note that successive entries to the year or week fields (separated by blanks) are combinedaccording to the following rules:
• off-areas are overridden by overlapping on- and suspend-areas. Suspend-areas areoverridden by on-areas. Hence an entry of the form week 12-18 tue=13-17=onmeansthat queues referencing the corresponding calendar are disabled for the entire weekfrom 12.00-18.00 with the exception of Tuesday between 13.00-17.00, when thequeues are available.
• area overriding occurs only within a year or week area. If a year entry exists for a day,only the year calendar is taken into account and no area overriding is done with apossible conflicting week area.
• The second time specification in a daytime_range_listmaybebefore the first one andtreated as expected. An entry like year 12.3.2011=12-11=off causes the queue(s) tobe disabled 12.3.2011 from 00:00:00-10:59:59 to 12:00:00-23:59:59.

3.10.3 Examples to Illustrate the use of Calendars

calendar_name night
year

1.1.1999,6.1.1999,28.3.1999,30.3.1999-31.3.1999,18.5.1999-19.5.1999,
3.10.1999,25.12.1999,26.12.1999=on

week mon-fri=6-20

• The calendar configuration above defines a night, weekend and public holiday calen-dar
• On public holidays, night queues are explicitly enabled.

Grid Engine Administrator’s Guide v 8.7.0 211

3 Special Activities

• On working days, queues are disabled between 6.00 and 20.00.
• Saturdays and Sundays are implicitly handled as enabled times.

calendar_name day
year

1.1.1999,6.1.1999,28.3.1999,30.3.1999-31.3.1999,18.5.1999-19.5.1999,
3.10.1999,25.12.1999,26.12.1999

week mon-fri=20-6 sat-sun

• On public holidays day-queues are disabled.
• On working days such queues are closed during the night between 20.00 and 6.00,i.e. the queues are closed on Monday from 0.00 to 6.00 and on Friday from 20.00 to24.00. On Saturdays and Sundays the queues are disabled.

calendar_name night_s
year 1.1.1999,6.1.1999,28.3.1999,30.3.1999-31.3.1999, \

18.5.1999-19.5.1999,3.10.1999,25.12.1999,26.12.1999=on
week mon-fri=6-20=suspended

• night_s is a night, weekend and public holiday calendar with suspension.
• This is essentially the same scenario as the first example in this section, but queuesare suspended instead of switched off.

calendar_name weekend_s
year NONE
week sat-sun=suspended

• Weekend calendar with suspension, ignoring public holidays.
• Settings are only done on a weekly basis; there are no settings on a yearly basis.

3.11 Setting Up Nodes for Exclusive Use

Administrators can set up Altair Grid Engine in a way so that users can request hosts forexclusive use independent of how many processors or cores are provided. This is done in-dependently if the host is used for single-core batch jobs, bigger parallel jobs, or somethingdifferent.
Exclusive host usage can help:

• execute jobs independently that would otherwise interfere with other jobs or withsystem resources that can only be used exclusively.
• set up security terms required for certain jobs

Grid Engine Administrator’s Guide v 8.7.0 212

3 Special Activities

To enable hosts of an Altair Grid Engine cluster to be used for exclusive use, the adminis-trator has to:
• Add an exclusive boolean consumable to the complex definition that specifies as relopthe EXCL keyword and that is requestable. The qconf -mc command can be used todo so.

#name shortcut type relop requestable consumable default urgency aapre affinity ...
exclusive excl BOOL EXCL YES YES 0 1000 NO 0.000000 ...

• Attach the consumable to hosts that should be used exclusively. This is done byusing the qconf -me host_name command. exclusive=true has to be added to the
complex_values of the corresponding host.

Users who want to request a host exclusively have to
• specify the consumable during job submission. This is done via the -l exclusive=trueparameter via the command-line applications

> qsub -l exclusive=true

3.12 Deviating from a Standard Installation

3.12.1 Utilizing Cells

Using Altair Grid Engine, the resources used in a single cluster ormultiple individual clusterssharing the same set of files (binaries, libraries, etc.) contained in the $SGE_ROOT directorycan be set up.
If multiple clusters are set up, these are uniquely identified by the $SGE_CELL environmentvariable set during cluster installation. This variable contains a unique cell name that re-mains valid until the cluster is uninstalled. A recommended cell name for the first installedcluster is default.
After installing an Altair Grid Engine cell, the installer and the daemons write configurationfiles for that cell. These can be located in $SGE_ROOT/$SGE_CELL.
Note that at themoment, cells are loosely coupled so that each cell has a full set of daemonsand other components acting independently from the daemons and components of othercells. There is no automatic means to balance load between those clusters.
3.12.2 Using Path Aliasing

The Altair Grid Engine path aliasing facility provides administrators and users with themeans to reflect non-homogeneous file system structures in distributed environments.One example for this is home directories that are mounted under different paths ondifferent hosts.
Grid Engine Administrator’s Guide v 8.7.0 213

3 Special Activities

Consider a user home directory that is exported via NFS or SMB. This directorymight be mounted via automounter to /home/username on some Linux hosts and to/Users/username on hosts with Mac OS X as the operating system. On a Solaris host/home/username might be a link to /tmp_mnt/home/username where the directory wasmounted by the automounter.
If a user submits a job using the -cwd switch somewhere in the home directory, the jobneeds the home directory to be successfully found. If a job’s execution host is one wherethe homedirectory ismounted differently, the systemwill not be able to locate the directoryin the execution environment.
To solve this problem Altair Grid Engine allows administrators to define a global path alias-ing file in $SGE_ROOT/$SGE_CELL/common/sge_aliases. Users can also define a path aliasingfile in the directory $HOME/.sge_aliases.
The format of the file is as follows:

• Empty lines and lines beginning with a hash character (#) will be skipped.
• Other lines must contain four strings separated by space or tab characters
• The first string specifies a source path where a job is submitted
• The third string defines an execution host, and the fourth string defines a destinationpath
• The submit hostname and execution hostname can be replaced with an asterisk char-acter (*) that matches any hostname.

If the -cwd flag to qsub is specified, the path aliasingmechanism is activated and the definedfiles are processed as follows:
• The global path aliasing file is read.
• The user path aliasing file is read if present and it is appended to the global file.
• Lines not skipped will be processed from top to bottom.
• All lines are selected where the hostnamematches the submit hostname. The submitclient is executed where the source path forms the initial part of the current workingdirectory or one of the source path replacements that were previously selected.
• All selected entries are passed along with the job to the execution host.
• The leading part of the current working directory on the execution host is replacedby the source path replacement where execution host string matches. The currentworking directory is changed further when there are entries where the host stringand the initial part of the modified working directory match.

Here is an example for a path aliasing file that replaces the occurrence of /tmp_mnt/ by /.
Path Aliasing File
src-path sub-host exec-host replacement
/tmp_mnt * * /

Grid Engine Administrator’s Guide v 8.7.0 214

3 Special Activities

3.12.3 Host-name Resolving and Host Aliasing

For host-name resolving Altair Grid Engine uses the standard UNIX directory services likeDNS, NIS, and /etc/hosts depending on the operating system configuration. The resolvednames provided by such services are cached in the communication library. The hostnamecache is renewed from time to time. It is possible to change the re-resolution timeouts withthe following sge_qmaster configuration parameters (see also man sge_conf(5)):
• DISABLE_NAME_SERVICE_LOOKUP_CACHE• NAME_SERVICE_LOOKUP_CACHE_ENTRY_LIFE_TIME• NAME_SERVICE_LOOKUP_CACHE_ENTRY_UPDATE_TIME• NAME_SERVICE_LOOKUP_CACHE_ENTRY_RERESOLVE_TIME

In rare cases these standard services cannot be set up cleanly and Altair Grid Engine com-munication daemons running on different hosts are unable to automatically determine aunique hostname for one or all hosts which can be used on all hosts. When packages fromthe qmaster arrive at execution daemons (or vice versa), they can be rejected when theycome from a different IP address/hostname from that which the daemons are expecting.In such situations a host aliases file can be used to provide the communication daemonswith a private and consistent hostname resolution database.
Hence Altair Grid Engine allows configuration of a host_aliases file. The file has to be lo-cated in the $SGE_ROOT/$SGE_CELL/common/ directory of the installation. This file does amapping from all allowed hostnames to some unique hostname; the mapping is known tothe daemons via the Altair Grid Engine configuration.
Changes to the host_aliases file are not immediately active for components that are alreadyrunning. If the changes result e.g. in a different hostname for an execution daemon the dae-monmust be restarted. At startup of sge_execd or sge_qmaster the database configurationis verified and adjusted. This is also the case if the resulting hostname of the UNIX direc-tory services have changed. If the name of a sge_qmaster or sge_execd host has changedat the UNIX directory services during runtime the running components should be restartedto trigger an additional verification of the database. Without a restart of such daemons thechange will be effective once the cached value of the resolved hostname is renewed, andit might result in unexpected behavior if previously used hostnames are not resolveable ornot unique anymore.
Adding new entries without restarting the sge_qmaster daemon is possible if the resultinghostnames are not influencing the cluster configuration. The dependent configurations arehost configurations, admin host names, execd host names and submit host names. Thesge_qmaster daemon will re-read the host_aliases file during runtime from time to timeand add some information into the messages logging file. If it is necessary to restart thesge_qmaster daemon this will also result in a log message in the sge_qmaster messagesfile.

If an already-used hostname should be changed either in the directory services or in thehost_aliases file without restarting the sge_qmaster, the affected host should be removedfrom Altair Grid Engine first. Once all references to the old hostname are removed andall daemons running on that host have been shut down, the hostname can be changed.

Note

Grid Engine Administrator’s Guide v 8.7.0 215

3 Special Activities

Once the hostname has been changed the previous namemay still be cached in the com-munication library or in system services like named. Please make sure that the runningsge_qmaster resolves the hostname correctly before adding the renamed host again. Thisverification can be done using gethostbyname -all_rr <hostname>.

After creating or changing the host_aliases file, some daemonsmight have to be restarted.This can be done by e.g. qconf -ke, qconf -km, manually shutting down the shadowd, andfinally running inst_sge -start-all to restart all daemons.

Note

Making changes to the behavior of the standard UNIX directory services might also makeit necessary to restart affected Altair Grid Engine daemons.
Note

If it is required to restart both sge_qmaster and some sge_execd daemons, thesge_qmaster must be shut down before restarting all other Altair Grid Engine compo-nents.

Note

In order to test hostname resolution, gethostbyname -aname <alias> can be called on thecommand line. When testing be sure that <alias> itself can be resolved. When the aliasis not known by the UNIX directory service, it will not work correctly and gethostbynamewill report an error. In that case use system commands like ping to check whether thehostname can be resolved by the system itself.
In order to figure out the resulting name of a host at sge_qmaster gethostbyname -all_rr
<hostname> can be used; see also the man hostnameutils(1) man page. It will additionalyshow the name resolution of the <hostname> name on the current sge_qmaster host. Inorder to use this option the sge_qmaster daemon must be reachable.
Format of the host_aliases file

Each line of the host_aliases file contains a space-separated list of host aliases. The firstentry is always the unique hostname.
Example:
SLES11SP1 SLES11SP1_interface2

In this example the host has two network interfaces. With this host_aliases line Altair GridEngine components will choose the “SLES11SP1” interface for binding a port or for openinga connection.

Grid Engine Administrator’s Guide v 8.7.0 216

3 Special Activities

All used hostnames must be resolveable via some reachable directory service otherwisethe entry is ignored.
Note

Example:
hostfoo hostfoo.domain somehost somehost.domain

In this example the resolveable hosts “hostfoo.domain”, “somehost” and “some-host.domain” all resolve to the unique host-name “hostfoo”.

3.13 Integration with NVIDIA DCGM

Altair Grid Engine 8.6.0 is integrated with NVIDIA’s Data Center GPU Manager (DCGM) thatprovides detailed information about GPU resources.
3.13.1 Enabling Support for NVIDIA DCGM

Support for DCGM can be enabled at the host level by setting the execd parameter
DCGM_PORT to the port DCGM uses to communicate on the specific host (the default portis 5555). If DCGM is running Altair Grid Engine will automatically retrieve load values forthe installed and supported GPUs from DCGM. For each available device the load valuesare reported in the format cuda.<cuda_id>.<attribute>=<value> and are visible via qconf
-se:

cuda.0.affinity=SCTTCTTCTTCTTCTTCTTCTTCTTScttcttcttcttcttcttcttctt,
cuda.0.gpu_temp=36,
cuda.0.mem_free=16280.000000M,
cuda.0.mem_total=16280.000000M,
cuda.0.mem_used=0.000000M,
cuda.0.name=Tesla P100-PCIE-16GB,
cuda.0.power_usage=28.527000,
cuda.0.verstr=390.46,
cuda.1.affinity=ScttcttcttcttcttcttcttcttSCTTCTTCTTCTTCTTCTTCTTCTT,
cuda.1.gpu_temp=40,
cuda.1.mem_free=16160.000000M,
cuda.1.mem_total=16160.000000M,
cuda.1.mem_used=0.000000M,
cuda.1.name=Tesla V100-PCIE-16GB,
cuda.1.power_usage=27.298000,
cuda.1.verstr=390.46,
cuda.devices=2

Grid Engine Administrator’s Guide v 8.7.0 217

3 Special Activities

3.13.2 Using Load Values from NVIDIA DCGM

If RSMAP complexes are used to manage GPUs, each RSMAP id can be mapped to a GPUwith the parameter cuda_id (each GPU can be represented by more than one RSMAP id).The reported load values can then be used by AGE during the scheduling of GPU devices:
complex_values gpu=2(gpu0[cuda_id=0,device=/dev/nvidia0] \

gpu1[cuda_id=1,device=/dev/nvidia1])

CPU-GPU Affinity
If DCGM is enabled, Altair Grid Engine 8.6.0 allows requesting the special load value affinity.A job requesting a GPU and affinity will automatically be bound to the cores that have agood affinity to the assigned GPU. This ensures that the data between the CPU and GPU istransferred in the fastest way possible. Currently affinity is treated as a hard request; ifit is requested and Altair Grid Engine cannot bind the CPU cores needed for a GPU device,the job will not be scheduled. If fewer cores are needed the request can be combined withthe -binding switch.
The following job requests a GPU and is bound to the CPU cores that have a good affinityto the assigned GPU:
> qsub -l gpu=1[affinity=true] -b y sleep 1000
Your job 8 ("Sleeper") has been submitted

> qstat -j 8
==
job_number: 8
...
hard resource_list: gpu=1
...
granted devices 1: <host>: /dev/nvidia0
binding 1: <host>=0,0:0,1:0,2:0,3:1,0:1,1:1,2:1,3
resource map 1: gpu=<host>=(gpu0)

The affinity load value of a GPU can be overridden by defining a topology mask for theRSMAP id (see Configuring and Using the RSMAP Complex Type).
GPU Health
If a GPU is corrupt or in a bad health state the load value cuda.<cuda_id>.health and acorresponding error message are reported. Altair Grid Engine will automatically skip GPUswith a health load value != 0 during the scheduling process:
> qconf -se <host>
load_values ...

cuda.0.health=20, \
cuda.0.health_message_0=GPU failure, \
cuda.0.health_status_0=20, \
...

Grid Engine Administrator’s Guide v 8.7.0 218

3 Special Activities

3.14 Integration with Docker Engine

Altair Grid Engine provides an integration with Docker Engine that allows running jobs inDocker containers. This integration is implemented only on Linux execution hosts andneeds to have the Docker Engine properly installed on those execution hosts.
Altair Grid Engine automatically detects whether Docker Engine is installed on an executionhost. If a supported version of Docker Engine is installed and running on an execution host,Altair Grid Engine reports the value 1 for the host load value docker, and the the host loadvalues docker_version and docker_api_version show the installed version of theDocker Engine and the Docker API.
The Docker images that are available on that execution host are reported using the hostload value docker_images. This load value is one string of type RESTRING that contains allavailable Docker images, separated by commas. This type was selected because there isno better one available in Altair Grid Engine currently; a kind of string list would be moreadequate. See the example below to learnwhy. After the execution daemon starts, this loadvalue takes at least one load_report_time longer than all other load values to be reported.Depending on the Docker daemon it can be even longer.
There are corresponding complex variables defined which are automatically set accordingto the load values, so a job can to be started in a Docker container by requesting both the“docker” resource and a specific Docker image to use. Because the docker_images variableis of type RESTRING, this request must be a regular expression, e.g.:
-l docker_images="*ubuntu:14.04*"

Without the asterisks, the request would match only if there is just the ubuntu:14.04 imageavailable, but no others. A full job submit command line for a Docker job looks like this:
> qsub -l docker,docker_images="*ubuntu:14.04*" -S /bin/sh -b y hostname

If Docker is installed on an execution host, but the “docker” host load value is reported as
0, there can be several reasons for this.
One reason could be that the Docker Engine version is not supported. Docker Engine ver-sions from 1.8.3 to 1.13.0 and 17.03 to 17.09 are supported, on OpenSUSE and SLES up to1.12.6.
Another reason can be that the Docker daemon did not start properly. It has been ob-served that after installation of the Docker Engine or after a reboot of the execution host,the Docker daemon does not start properly. The service stays in starting state and neverbecomes running. If run as root, the command
> systemctl status docker

shows the status of the service. To fix this, the service has to be restarted manually as root:
> systemctl restart docker

Grid Engine Administrator’s Guide v 8.7.0 219

3 Special Activities

If Docker is not detected automatically, it doesn’t help to overwrite the load value with aconfigured complex value. In this case, the job will be dispatched to the execution host, butcannot be started and will fail.
On the other hand, an execution host with a running Docker Engine can be disabled forDocker jobs by configuring docker=0 in the complex_values list of the execution host. Thisoverwrites the load value, so no Docker jobs are subsequently scheduled to this executionhost.
Altair Grid Engine allows submitting jobs with a soft request for a Docker image. In thiscase, Altair Grid Engine tries to find a matching execution host where this image is alreadyavailable. If it is not available, Altair Grid Engine selects a matching execution host with aDocker Engine installed and running, and tells the Docker daemon to download the imagebefore job start.
It has been observed that this downloading is broken with some Linux distributions andsome Docker versions. In this case, the Docker images have to be downloaded manually tothat execution host using the docker run command, e.g.:
> docker run notavailableimage:latest hostname

will load the latest version of the notavailableimage.
3.14.1 Docker Images Suitable for Autostart Docker Jobs with Arguments

The so called autostart Docker jobs do not specify a job script or binary to start; insteadthey use the keyword NONE to indicate the Docker container shall be started by running thescript or binary that is defined in the ENTRYPOINT of the Docker image.
The ENTRYPOINT can be viewed by running
$ docker inspect image:tag

The data in the section Config is relevant. When the Docker image is built it is possible tospecify the ENTRYPOINT in the Dockerfile in an informal way, e.g.:
ENTRYPOINT /path/to/script

The docker build command will accept this, but with such an image, no arguments canbe specified (while this might change with the exact Docker version). If the ENTRYPOINTis specified properly, the arguments on the command line are forwarded to the script orbinary defined in the ENTRYPOINT, e.g.:
ENTRYPOINT ["/path/to/script"]

It is also possible to define arguments that are always provided to the script or binary, e.g.:
ENTRYPOINT ["/path/to/script", "fixedarg1", "fixedarg2"]

Grid Engine Administrator’s Guide v 8.7.0 220

3 Special Activities

The script or binary in the Docker container created from this image will always get
fixedarg1 as the first argument and fixedarg2 as the second argument. If there arefurther arguments specified on the command line, they are appended to the “fixed” ones.E.g. if the script just prints the arguments it gets, this command line would produce theoutput:
$ docker run -it myimage:latest arg1 arg2 \

fixedarg1 fixedarg2 arg1 arg2

or with an Altair Grid Engine job:
$ qsub -l docker,docker_images="*myimage:latest*" -b y NONE arg1 arg2
$ cat ~/NONE.o1
fixedarg1 fixedarg2 arg1 arg2

Additionally, the CMD and RUN entries can affect the behavior of the Docker container andcould prevent the provided arguments from being forwarded properly.
An autostart Docker job can be submitted only as a batch job using qsub. It cannot besubmitted as an interactive job using qrsh or qlogin or as a parallel job.
3.14.2 Run container as root, allow running prolog etc. as a different user

With the execd_params START_CONTAINER_AS_ROOT it is now possible to let all Dockercontainers be started as root and allow the prolog, pe_start, per_pe_task_prolog,per_pe_task_epilog, pe_stop and epilog scripts to be started as a different user fromthe job owner. This change does not apply to “autostart Docker jobs”, i.e. jobs that specify
-b y NONE as job script in order to use the entrypoint that is defined in the Docker imageinstead of using the sge_container_shepherd as entrypoint.
3.14.3 Automatically map user ID and group ID of a user into the container

If the START_CONTAINER_AS_ROOT parameter is set to true, it is now necessary that the AltairGrid Engine admin user, the job user and all pre- and post-script users are defined insidethe container. Because this is usually not the case, by setting the AUTOMAP_CONTAINER_USERSparameter to TEMPORARY, Altair Grid Engine transfers the user ID and group ID of any ofthese users from the host to the container. But only Altair Grid Engine itself can use thisinformation there; it is not available for the job or any of the scripts started by Altair GridEngine!
If AUTOMAP_CONTAINER_USERS is set to PERSISTENT, Altair Grid Engine writes an entry to the
/etc/passwd file inside the Docker container for all these users. This allows looking up theuser information via a script, but it does not allow switching to this user!
Caution! If AUTOMAP_CONTAINER_USERS=PERSISTENT is specfied, if a user maps the
/etc/passwd and /etc/group file into the container, the host files are modified!

Grid Engine Administrator’s Guide v 8.7.0 221

3 Special Activities

3.14.4 Create a container_pe_hostfile with all container hostnames

If a parallel Docker job is started where the container hostnames are selected fromRSMAPs, the execution daemon of the master task writes a container_pe_hostfilewith all the container hostnames in the pe_hostfile format if the execd_params
CONTAINER_PE_HOSTFILE_COMPLEX is set to the name of the RSMAP complex that defines thehostnames.
E.g.: If there is a RSMAP “cont_hosts” declared and on each execution host it defines valueslike:
cont_host=4(host1_cont1 host1_cont2 host1_cont3 host1_cont4)

and a job is submitted using
qsub -pe mype 4 -l docker,docker_images="*image:latest*",cont_host=1 job_script.sh

and the scheduler decides to schedule the master task to host1, two slave tasks to host2and one slave task to host3, the container_pe_hostfile might contain:
host1_cont3 1 <NULL> <NULL>
host2_cont1 1 <NULL> <NULL>
host2_cont4 1 <NULL> <NULL>
host3_cont2 1 <NULL> <NULL>

This allows reading this information in a per_pe_task_prolog and setting the hostnames ofthe containers inside of the containers accordingly.
3.14.5 Run tightly-integrated parallel jobs in Docker containers

What makes tightly-integrated parallel jobs different from sequential ones is the fact thatusually the master task of the job interacts with Altair Grid Engine in order to start the slavetasks. While sequential jobs might also have certain requirements for their environmentand thus cannot run in an unprepared Docker container, for parallel jobs even the start canfail if the Docker container is not set up properly.
A tightly-integrated parallel job consists of amaster task and several slave tasks. While AltairGrid Engine reserves the slots and other resources for the slave tasks, usually the mastertask starts the slave tasks using qrsh -inherit <hostname>.
Because a parallel Docker jobs runs in a container that - by default - has its own separateDocker network which is not part of the cluster network and that does not know the host-names and IP addresses of the other cluster hosts, themaster task running in this containercannot submit slave tasks to the “physical” slave execution hosts.
In order to be able to do this, inside the container the following must be set properly:

• cluster network access• hostname resolution
Grid Engine Administrator’s Guide v 8.7.0 222

3 Special Activities

• Altair Grid Engine admin user, job user, prolog user, etc. and their respective groups• Altair Grid Engine CSP certificates, if CSP mode is selected
And, in order to allow the containers to communicate with each other, e.g. for the MPIintegration, the container must have a hostname and IP address that are known to othercontainers.
1) Allow the container to participate in the cluster network:The easiest way to achieve this should be using the submit option -xd "--net=host"or -xd "--network host" (-xd means “external docker option” and allows forwardingseveral docker run options to the execution host; see qsub -xd "--help" for a list ofsupported options). This makes the container inherit both the hostname and the IPaddress of the “physical” host.
2) Allow the container to resolve the names of physical hosts or other containers:This can be achieved by mapping the /etc/hosts file of the physical host in thecontainer by specifying -xd "-v /etc/hosts:/etc/hosts" or by creating a temporaryhosts file from LDAP/NIS/etc. and mapping this into the container.
3) Define the various users inside the container:If the container is started as root by configuring the execd_params START_CONTAINER_AS_ROOT=TRUE,the sge_container_shepherd will try to start start and stop scripts such as the prologas the configured user and will do all file operations as the Altair Grid Engine adminuser. Because Altair Grid Engine transfers the user name, not the user ID, insidethe container the user name must be known and the user ID must be definedin order to work properly. The user and group names and IDs can be definedin the container by specifying -xd "-v /etc/passwd:/etc/passwd" and -xd "-v

/etc/group:/etc/group" on the qsub command line. Again, instead of using thesefiles from the physical host, temporary files can be created from LDAP/NIS/etc. to bemapped into the container.Of course, it is also possible to configure the Docker images to use LDP/NIS/etc.directly. See the Docker documentation for details about this.
4) Altair Grid Engine CSP certificates for CSP mode:If the Altair Grid Engine CSP mode is used, the certificates must be mapped into thecontainer in order to allow the master task use qrsh -inherit. This is done by speci-fying -xd "-v $PATH_TO_CERTS:$PATH_TO_CERTS" on the qsub or qrsh command line.
5) Allow containers of an MPI Docker job to communicate with each other:In order to allow a slave task running in one container to communicate with the slavetask in another container using MPI, the container hostnames must be set to knownvalues.To achieve this, declare an RSMAP complex and define the hostname as describedin “Create a container_pe_hostfile with all container hostnames”. The container host-names and IPs must be defined in DNS or /etc/hosts and be mounted to all contain-ers as described in 2). Then, the prolog script must move the pe_hostsfile away andrename the container_pe_hostfile to pe_hostfile. This way MPI knows the namesof the containers the slave tasks run in and can communicate with them.

Grid Engine Administrator’s Guide v 8.7.0 223

3 Special Activities

Examples:All examples use the job script job.sh which uses qrsh -inherit $HOSTNAME ... to startthe slave tasks which run the task script task.sh.
$ cat job.sh
#!/bin/sh
set PATH to "qrsh" binary
export PATH=$SGE_O_PATH:$PATH
qrsh -inherit -noshell -nostdin $HOSTNAME /home/user/task.sh $1 &
qrsh -inherit -noshell -nostdin $HOSTNAME /home/user/task.sh $1 &
exit 0

$HOSTNAME is set by AGE to the name of the physical host, not the container hostname,also inside of the container.
$ cat task.sh
#!/bin/sh
echo "I am a task, it is now `date`! Now sleeping for $1 s."
sleep $1
echo "I am a task, it is now `date`! I'm done now."
exit 0

The parallel environment docker.pe uses the allocation_rule $pe_slots.
Example A)Aparallel Docker jobwith the container running as the jobuser (START_CONTAINER_AS_ROOT=false)
One could think this is sufficient:
$ qsub -pe docker.pe 3 -l docker,docker_images="*ubuntu:14.04*" job.sh 10

but then the qrsh command inside the job script cannot get information aboutthe job user as whom it is started and fails. To fix this, add the option -xd "-v
/tmp/my_passwd:/etc/passwd" which maps the /tmp/my_passwd file that must containinformation about the job user. This file can be either the /etc/passwd file on the host, ora file that is generated from LDAP/NIS etc. before job start.
As the next step, the qrsh command inside the job script tries to resolve the host it is startedon. By default, Docker sets the hostname of the container to the first twelve characters ofthe container ID, which isn’t a known hostname in the cluster. It is possible to tell Dockerto let the container inherit the hostname and IP address of the host by specifying the -xd
"--net=host" option.
Furthermore it is necessary to mount the directory in which the task.sh script is located tothe container. In our example, it is located in /home/user, so the /home directory must bemounted to the container, too.
These two enhancements lead to the following submit command line:

Grid Engine Administrator’s Guide v 8.7.0 224

3 Special Activities

$ qsub -pe docker.pe 3 -l docker,docker_images="*ubuntu:14.04*" \
-xd "-v /tmp/my_passwd:/etc/passwd","-v /home:/home","--net=host" \
~/job.sh 10

With this, our parallel test job now runs properly. This works only if all tasks of a paralleljob run on the same host, i.e. if the allocation_rule is $pe_slots or <int>.
If the slave tasks are distributed over different hosts, the job.sh script has to parse the
pe_hostfile and submit the qrsh -inherit $host ... to respective hosts.
Example B)A parallel Docker job with the container running as root (START_CONTAINER_AS_ROOT=true)that is distributed over several execution hosts
Sometimes it is necessary to run start and stop scripts such as the prolog as root inthe container in order to set up certain things. With the execd_params config option
START_CONTAINER_AS_ROOT=true, all containers are started as root. The start and stopscripts can be run as the configured users and the job itself is still started as the job user.
In order to be able to run the prolog etc. as the configured user, it is necessary to makethese users known inside the container. There is the AUTOMAP_CONTAINER_USERS=PERSISTENTexecd_param that maps the necessary users into the container.
If these two configurations are made, the following command line is sufficient to run aparallel Docker job on one host (i.e. allocation_rule is $pe_slots or <int>):
$ qsub -pe docker.pe 3 -l docker,docker_images="*ubuntu:14.04*" \

-xd "-v /home:/home","--net=host" job.sh 10

Again, to start slave tasks on different hosts, the job.sh script has to parse the pe_hostfileand submit the qrsh -inherit $host ... to these hosts.
3.14.6 Configuring the Docker daemon response timeout

The execd_params DOCKER_RESPONSE_TIMEOUT allows definition of the time Altair Grid Enginewaits for a response from the Docker daemon to a request that Altair Grid Engine sent tothe Docker daemon earlier. This does not mean the full response must be received withinthe timeout; the timeout counter is reset after each character Altair Grid Engine receivesfrom the Docker daemon in response to a specific request.
If this parameter is not specified, the default value of 60 seconds is used. Theminimum time-out is 10 seconds; the maximum timeout is 86400 seconds. If DOCKER_RESPONSE_TIMEOUT isnot within this range, the default value is used instead.
3.14.7 Support for nvidia-docker 2.0

NVIDIA provides version 2.0 of their Docker Container Runtime, which allows access toGPUsfrom within Docker containers. Altair Grid Engine now supports using this version of Con-tainer Runtime.

Grid Engine Administrator’s Guide v 8.7.0 225

3 Special Activities

In order tomake use of this, first the installation on the execution host has to be performedproperly; see https://github.com/NVIDIA/nvidia-docker. The job that wants to use a GPUmust tell Docker to use the NVIDIA Runtime by specifying the -xd "--runtime=nvidia"switch on the qsub or qrsh command line. In order to select a specific GPU, the environ-ment variable NVIDIA_VISIBLE_DEVICES must be set for the whole container by specifyingit via the -xd "--env NVIDIA_VISIBLE_DEVICES=0" switch.
Altair Grid Engine also supports the Docker run option gpus to select GPUs for the con-tainer. The switch accepts either all to select all GPUs on the host, any integer > 0 to selecta specific amount of GPUs, or the parameter device followed by a list of device ids to se-lect specific GPUs, e.g. -xd "--gpus=device=\"0,1\"". Please note that -xd "--gpus=..."requires Docker API version 1.40 or newer.

3.15 Special Tools

3.15.1 The Loadcheck Utility

The loadcheck utility is located in the ‘utilbin’ directory of $SGE_ROOT. It retrieves and showsload values for the host where it is started. It shows the number of detected processors,the execution host topology (if it can be retrieved), and CPU/memory load values.
> ./loadcheck
arch lx-amd64
num_proc 1
m_socket 1
m_core 1
m_thread 1
m_topology SC
load_short 0.07
load_medium 0.14
load_long 0.07
mem_free 1532.828125M
swap_free 2053.996094M
virtual_free 3586.824219M
mem_total 1960.281250M
swap_total 2053.996094M
virtual_total 4014.277344M
mem_used 427.453125M
swap_used 0.000000M
virtual_used 427.453125M
cpu 0.0%

The default format for the memory values can be converted to an integer format via theparameter -int. Additionally it has a built-in debugging facility for obtaining more detailsabout the execution host topology and the core binding feature. When the application iscalled with the -cb switch, it prints out internal kernel statistics (on Solaris), and on Linux itprints the mapping of socket/core numbers to the internal processor IDs.

Grid Engine Administrator’s Guide v 8.7.0 226

https://github.com/NVIDIA/nvidia-docker

3 Special Activities

> ./loadcheck -cb
Your AGE Linux version has built-in core binding functionality!
Your Linux kernel version is: 2.6.34.7-0.7-desktop
Amount of sockets: 1
Amount of cores: 1
Amount of threads: 1
Topology: SC
Mapping of logical socket and core numbers to internal
Internal processor ids for socket 0 core 0: 0

3.15.2 Utilities for LMDB spooling

Altair Grid Engine can be configured to use an LMDB for spooling in sge_qmaster.
LMDB comes with a number of command-line tools, some of which can be useful for oper-ating and debugging Altair Grid Engine spooling.

Do not use these tools on a database which is in use by an active sge_qmaster. Use thetools only when advised to do so by a support engineer.
Warning

The following tools are delivered with Altair Grid Engine:
• mdb_dump: Database dump utility - used for making a backup; called when using

inst_sge -bup

• mdb_load: Database load utility - used for restoring a database dump; called whenusing inst_sge -rst

• mdb_stat: Statistics utility.
• mdb_copy: LMDB environment copy tool

The LMDB man pages for these tools are part of the Altair Grid Engine distribution in thecommon package. To access them, call man -M $SGE_ROOT/doc/lmdb/man mdb_dump

Grid Engine Administrator’s Guide v 8.7.0 227

	Navigating and Understanding
	Navigating the System
	Location of Configuration Files and Binaries
	Displaying Status Information
	Understanding the Various Job States

	Understanding a Default Installation
	Default Queue
	Default PE
	Default User Set Lists
	Default Host Group List
	Default Complex Attributes

	Understanding Key Configuration Objects
	The Cluster Configuration
	The Scheduler Configuration
	Host and Queue Configurations

	Navigating the ARCo Database
	Accessing the ARCo Database
	Views to the Database
	Accounting

	message text a message describing the event
	Database Tables

	Common Administrative Tasks in a System
	Draining Then Stopping the Cluster
	Starting Up and Activating Nodes Selectively
	Adding New Execution Hosts to an Existing System
	Generate/Renew Certificates and Private Keys for Users
	Backup and Restore the Configuration
	Changing the admin password for all Starter Services on all execution hosts

	Managing User Access
	Setting Up a User
	Managers
	Operators and Owners
	Permissions of Managers, Operators, Job or Queue Owners
	User Access Lists and Departments
	Projects

	Understanding and Modifying the Cluster Configuration
	Commands to Add, Modify, Delete or List Global and Local Configurations
	Configuration Parameters for Global and Local Configurations

	Understanding and Modifying the Scheduler Configuration
	The Default Scheduling Scheme

	Configuring Properties of Hosts and Queues
	Configuring Hosts
	Configuring Queues
	Utilizing Complexes and Load Sensors
	Configuring and Using the RSMAP Complex Type
	Managing Access to Devices with RSMAPs
	Advanced Attribute Configuration
	Configuring and Using Linux cgroups

	Monitoring and Modifying User Jobs
	Diagnostics and Debugging
	KEEP_ACTIVE functionality
	Diagnosing Scheduling Behavior
	Location of Logfiles and How to Interpret Them
	Turning on Debugging Information

	Licensing - Summary concerning licensing of
	General Overview
	Licensed Resources
	License Usage Records
	Licensing Actions
	Licensing Algorithm
	Requirements
	Administrative Commands
	Display License Usage Over Time.
	Trigger License Verification Manually
	Enforce Reporting of Cloud Resources
	Transfer License Usage Information between Clusters
	Disabling License Consumption for Specific Hosts and/or Resources
	AGERest interface

	Special Activities
	Tuning for High Throughput
	sge_qmaster Tuning
	Tuning Scheduler Performance
	Reducing Overhead on the Execution Side

	Optimizing Utilization
	Using Load Reporting to Determine Bottlenecks and Free Capacity
	Scaling the Reported Load
	Alternative Means to Determine the Scheduling Order

	Managing Capacities
	Using Resource Quota Sets
	Using Consumables

	Implementing Pre-emption Logic
	When to Use Pre-emption
	Utilizing Queue Subordination
	Advanced Pre-emption Scenarios

	Integrating with a License Management System
	Managing Priorities and Usage Entitlements
	Share Tree (Fair-Share) Ticket Policy
	Functional Ticket Policy
	Override Ticket Policy
	Job Shares
	Handling of Array Jobs with the Ticket Policies
	Urgency Policy
	User Policy: POSIX Policy

	Job Placement
	Host/Queue Sorting
	Affinity, Anti-Affinity, Best Fit
	Affinity Use Cases
	Affinity
	Anti-Affinity
	Best Fit

	Advanced Management for Different Types of Workloads
	Parallel Environments
	Setting Up Support for Interactive Workloads
	Setting Up Support for Checkpointing Workloads
	Enabling Reservations
	Greedy Resource Reservation (Deprecated)
	Simplifying Job Submission Through the Use of Default Requests
	Job Submission Verifiers
	Enabling and Disabling Core Binding

	Ensuring High Availability
	Prerequisites
	Installation
	Testing sge_shadowd Takeover
	Migrating the Master Host Back After a Takeover
	Tuning the sge_shadowd
	Troubleshooting

	Utilizing Calendar Schedules
	Commands to Configure Calendars
	Calendars Configuration Attributes
	Examples to Illustrate the use of Calendars

	Setting Up Nodes for Exclusive Use
	Deviating from a Standard Installation
	Utilizing Cells
	Using Path Aliasing
	Host-name Resolving and Host Aliasing

	Integration with NVIDIA DCGM
	Enabling Support for NVIDIA DCGM
	Using Load Values from NVIDIA DCGM

	Integration with Docker Engine
	Docker Images Suitable for Autostart Docker Jobs with Arguments
	Run container as root, allow running prolog etc. as a different user
	Automatically map user ID and group ID of a user into the container
	Create a container_pe_hostfile with all container hostnames
	Run tightly-integrated parallel jobs in Docker containers
	Configuring the Docker daemon response timeout
	Support for nvidia-docker 2.0

	Special Tools
	The Loadcheck Utility
	Utilities for LMDB spooling

