
UNIVA, AN ALTAIR COMPANY

GRID ENGINE DOCUMENTATION

Grid Engine Users’s Guide

Author:

Altair Engineering

Version:

8.6.17

November 4, 2020

©2020ALTAIR ENGINEERING, INC. ALL RIGHTS RESERVED.

WE ARE CURRENTLY LISTED ON NASDAQ AS ALTR. UNIVA IS AN ALTAIR COMPANY

Contents

Contents

1 Overview of Basic User Tasks 1

2 A Simple Workflow Example 1

3 Displaying Univa Grid Engine Status Information 5

3.1 Cluster Overview . 5

3.2 Hosts and Queues . 5

3.3 Requestable Resources . 8

3.4 User Access Permissions and Affiliations . 11

4 Submitting Batch Jobs 13

4.1 What is a Batch Job? . 13

4.2 How to Submit a Batch Job . 13

4.2.1 Example 1: A Simple Batch Job . 14

4.2.2 Example 2: An Advanced Batch Job . 14

4.2.3 Example 3: Another Advanced Batch Job 15

4.2.4 Example 4: A Simple Binary Job . 15

4.3 Specifying Requirements . 15

4.3.1 Request Files . 17

4.3.2 Requests in the Job Script . 17

5 Using Job Classes to Prepare Templates for Jobs 18

5.1 Examples Motivating the Use of Job Classes . 18

5.2 Defining Job Classes . 20

5.2.1 Attributes describing a Job Class . 20

5.2.2 Example 1: Job Classes - Identity, Ownership, Access 22

5.2.3 Attributes to Form a Job Template . 22

5.2.4 Example 2: Job Classes - Job Template . 26

5.2.5 Access Specifiers to Allow Deviation . 27

5.2.6 Example 3: Job Classes - Access Specifiers 29

5.2.7 Different Variants of the same Job Class 30

5.2.8 Example 4: Job Classes - Multiple Variants 31

5.2.9 Enforcing Cluster Wide Requests with the Template Job Class 32

Grid Engine Users’s Guide v 8.6.17 i

Contents

5.3 Relationship Between Job Classes and Other Objects 34

5.3.1 Resources Available for Job Classes . 34

5.3.2 Defining Job Class Limits . 35

5.3.3 JSV and Job Class Interaction . 35

5.4 Commands to Adjust Job Classes . 36

5.4.1 Creating, Modifying and Deleting Job Classes 36

5.4.2 States of Job Classes . 37

5.5 Using Job Classes to Submit New Jobs . 38

5.6 Example: Submit a Job Class Job and Adjust Some Parameters 39

5.7 Status of Job Classes and Corresponding Jobs 41

6 Monitoring and Controlling Jobs 42

6.1 Getting Status Information on Jobs . 42

6.2 Deleting a Job . 43

6.3 Re-queuing a Job . 44

6.4 Modifying a Waiting Job . 45

6.4.1 Altering Job Requirements . 45

6.5 Changing Job Priority . 46

6.6 Obtaining the Job History . 46

7 Other Job Types 48

7.1 Array Jobs . 48

7.2 Interactive Jobs . 50

7.2.1 qrsh and qlogin . 51

7.2.2 qmake . 51

7.2.3 qsh . 52

7.3 Parallel Jobs . 52

7.3.1 Parallel Environments . 53

7.3.2 Submitting Parallel Jobs . 55

7.3.3 Parallel Jobs and Core Binding . 56

7.4 Jobs with Core Binding . 57

7.4.1 Showing Execution Host Topology Related Information 58

7.4.2 Requesting Execution Hosts Based on the Architecture 59

7.4.3 Requesting Specific Cores . 60

Grid Engine Users’s Guide v 8.6.17 ii

Contents

7.4.4 PE-Jobs with core binding . 60

7.5 NUMA Aware Jobs: Jobs with Memory Binding and Enhanced Memory Man-

agement . 61

7.5.1 Memory Allocation Strategy round_robin 64

7.5.2 Memory Allocation Strategy cores and cores:strict 65

7.5.3 Memory Allocation Strategy nlocal . 66

7.6 Checkpointing Jobs . 68

7.6.1 User-Level Checkpointing . 68

7.6.2 Kernel-Level Checkpointing . 68

7.6.3 Checkpointing Environments . 68

7.6.4 Submitting a Checkpointing Job . 69

7.7 Immediate Jobs . 70

7.8 Reservations . 70

7.8.1 Advance Reservations . 70

7.8.2 Standing Reservations . 73

7.9 Jobs using Docker Containers . 80

7.9.1 Running a sequential job in a Docker container 80

7.9.2 Running a parallel Job in Docker containers 83

7.9.3 Running MPI jobs in Docker containers 84

7.9.4 Running an array Job in Docker containers 85

7.9.5 Running a Job in a Docker image that is not available locally 85

7.9.6 Using placeholders to dynamically define Docker options 85

7.9.7 Support for nvidia-docker 2.0 . 86

8 Getting a Consistent View onto the System by Using Sessions 86

8.1 Communication with Univa Grid Engine without using Sessions 87

8.2 Using sessions to communicate with the system 87

9 Submission, Monitoring and Control via an API 89

9.1 The Distributed Resource Management Application API (DRMAA) 89

9.2 Basic DRMAA Concepts . 90

9.3 Supported DRMAA Versions and Language Bindings 90

9.4 When to Use DRMAA . 90

9.5 Environment Variable Influences . 90

Grid Engine Users’s Guide v 8.6.17 iii

Contents

9.6 Examples . 91

9.6.1 Building a DRMAA Application with C** 91

9.6.2 Building a DRMAA Application with Java 94

9.7 Further Information . 95

10 Advanced Concepts 96

10.1 Job Dependencies . 96

10.1.1 Examples . 96

10.2 Using Environment Variables . 98

10.3 Using the Job Context . 101

10.4 Transferring Data . 102

10.4.1 Transferring Data within the Job Script 102

10.4.2 Using Delegated File Staging in DRMAA Applications 102

10.5 Manual, Semi-Automatic and Automatic Preemption 104

10.5.1 Preemption Terms . 104

10.5.2 Preemption Trigger and Actions . 104

10.5.3 Manual Preemption . 107

10.5.4 Preemption Configuration . 108

10.5.5 Preemption in Combination with License Orchestrator 108

10.5.6 Common Use Cases . 109

11 Submitting Jobs from or to Windows hosts 110

11.1 Job submission from a Windows submit host to a Windows execution host . . 111

11.1.1 Running Jobs in the foreground . 112

11.2 Job submission from an UNIX submit host to a Windows execution host . . . 113

11.3 Job submission from a Windows submit host to an UNIX execution host . . . 114

Grid Engine Users’s Guide v 8.6.17 iv

2 A Simple Workflow Example

1 Overview of Basic User Tasks

Univa Grid Engine offers the following basic commands, tools and activities to accomplish

common user tasks in the cluster:

Task Command

submit jobs qsub, qresub, qrsh, qlogin, qsh, qmake

check job status qstat

modify jobs qalter, qhold, qrls

delete jobs qdel

check job accounting after job end qacct

display cluster state qstat, qhost, qselect, qquota

display cluster configuration qconf

Table 1: Basic tasks and their corresponding commands

Note

qsh is not available on Microsoft Windows submit hosts and a qsh cannot be submitted
to Windows execution hosts.

The next sections provide detailed descriptions of how to use these commands in a Univa

Grid Engine cluster.

2 A Simple Workflow Example

Using Univa Grid Engine from the command line requires sourcing the settings file to set

all necessary environment variables. The settings file is located in the <UGE installation
path>/<UGE cell>/common directory. This directory contains two settings files for Unix:
settings.sh for Bourne shell, bash and compatible shells, and settings.csh for csh and
tcsh. If a Windows execution, submit or admin host is part of the Univa Grid Engine cluster,
there is also a settings.bat for the Windows console (also known as cmd.exe window).

For simplicity, this document refers to the <UGE installation path> as $SGE_ROOT and
the <UGE_CELL> as $SGE_CELL. Both environment variables are set when the settings file is
sourced.

Source the settings file. Choose one of the following commands to execute based on the

shell type in use.

Bourne shell/bash:

. $SGE_ROOT/$SGE_CELL/common/settings.sh

Grid Engine Users’s Guide v 8.6.17 1

2 A Simple Workflow Example

csh/tcsh:

source $SGE_ROOT/$SGE_CELL/common/settings.csh

Windows console:

> %SGE_ROOT%\%SGE_CELL%\common\settings.bat

Now that the shell is set up to work with Univa Grid Engine, it is possible to check which

hosts are available in the cluster by running the qhost command.

Sample qhost output:

qhost
HOSTNAME ARCH NCPU LOAD MEMTOT MEMUSE SWAPTO SWAPUS

global - - - - - - -
kailua lx-amd64 4 1.03 7.7G 2.2G 8.0G 0.0
halape lx-x86 2 0.00 742.8M 93.9M 752.0M 0.0
kahuku lx-amd64 2 0.01 745.8M 103.8M 953.0M 0.0

The sample qhost output above shows three hosts available, all of which run Linux (lx-),
two in 64 bit (amd64), one in 32 bit mode (x86). One provides 4 CPUs; the other two just 2
CPUs. Two hosts are idle but have approximately 740 MB RAM available, while the third is

loaded by 25% (LOAD divided by NCPU) and has 7.7 GB RAM in total.

This sample cluster has more than enough resources available to run a simple example

batch job. Use the qsub command to submit a batch job. From the example job scripts in

$SGE_ROOT/examples/jobs, submit sleeper.sh.

Note

The following example applies only to UNIX submit and execution hosts. How to

submit the following job from or to a Windows host is explained in Submitting Jobs

from or to Windows hosts.

qsub $SGE_ROOT/examples/jobs/sleeper.sh
Your job 1 ("Sleeper") has been submitted

The qsub command sent the job to the Qmaster to determine which execution host is best

suited to run the job. Follow the job’s different stages with the qstat command:

• Immediately after submission, the job is in state qw (queued, waiting) in the pending

job list.

qstat shows the submit time (when the job was submitted to the Qmaster from the qsub
command on the submit host).

Grid Engine Users’s Guide v 8.6.17 2

2 A Simple Workflow Example

qstat
job-ID prior name user state submit/start at queue slots ja-task-ID

1 0.00000 Sleeper jondoe qw 03/10/2011 19:58:35 1

Note

If running on a Windows execution host, the job name will be “cmd.exe”.

• A few seconds later, qstat shows the job in state r (running) and in the run queue all.q
on host kahuku.

Since the job is running, qstat shows the start time (when the job was started on the

execution host). A priority was automatically assigned to the job. Priority assignment is

explained later in this document.

qstat
job-ID prior name user state submit/start at queue slots ja-task-ID

1 0.55500 Sleeper jondoe r 03/10/2011 19:58:42 all.q@kahuku 1

Note

Between the states qw and r, the job may be in state t (transferring) for a short time

or state l (waiting for license). Occasionally, these states can also be seen in the qstat
output.

While a job is running, use the qstat -j <job-ID> command to display its status:

qstat -j 1
==
job_number: 1
exec_file: job_scripts/1
submission_time: Thu Mar 11 19:58:35 2011
owner: jondoe
uid: 1000
group: users
gid: 100
sge_o_home: /home/jondoe
sge_o_log_name: jondoe
sge_o_path: /gridengine/bin/lx-amd64:/usr/local/sbin:

/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:.
sge_o_shell: /bin/tcsh
sge_o_workdir: /gridengine
sge_o_host: kailua
account: sge
hard resource_list: hostname=kailua

Grid Engine Users’s Guide v 8.6.17 3

2 A Simple Workflow Example

mail_list: jondoe@kailua
notify: FALSE
job_name: Sleeper
jobshare: 0
shell_list: NONE:/bin/sh
env_list:
job_args: 3600
script_file: /gridengine/examples/jobs/sleeper.sh
binding: NONE
usage 1: cpu=00:00:00, mem=0.00000 GBs, io=0.00003,

vmem=8.008M, maxvmem=8.008M
binding 1: NONE
scheduling info: (Collecting of scheduler job information

is turned off)

This simple sleeper job does nothing but sleep on the execution host. It doesn’t need input,

but it outputs two files in the home directory of the user who submitted the job: Sleeper.o1
and Sleeper.e1. The Sleeper.e1 file contains whatever the job printed to stderr, and it
should be empty if the job ran successfully. The Sleeper.o1 file contains what the job
printed to stdout, for example:

Here I am. Sleeping now at: Thu Mar 10 20:01:10 CET 2011
Now it is: Thu Mar 10 20:02:10 CET 2011

Univa Grid Engine also keeps records of this job, as shown with the qacct command:

qacct -j 1
==
qname all.q
hostname kailua
group users
owner jondoe
project NONE
department defaultdepartment
jobname Sleeper
jobnumber 10
taskid undefined
account sge
priority 0
qsub_time Thu Mar 10 19:58:35 2011
start_time Thu Mar 10 19:58:42 2011
end_time Thu Mar 10 19:59:43 2011
granted_pe NONE
slots 1
failed 0
exit_status 0
ru_wallclock 61
ru_utime 0.070

Grid Engine Users’s Guide v 8.6.17 4

3 Displaying Univa Grid Engine Status Information

ru_stime 0.050
ru_maxrss 1220
ru_ixrss 0
ru_ismrss 0
ru_idrss 0
ru_isrss 0
ru_minflt 2916
ru_majflt 0
ru_nswap 0
ru_inblock 0
ru_oublock 176
ru_msgsnd 0
ru_msgrcv 0
ru_nsignals 0
ru_nvcsw 91
ru_nivcsw 8
cpu 0.120
mem 0.001
io 0.000
iow 0.000
maxvmem 23.508M
arid undefined

Refer to the accounting(5)man page for the meaning of all the fields output by the qacct

command.

3 Displaying Univa Grid Engine Status Information

3.1 Cluster Overview

Several commands provide different perspectives on Univa Grid Engine cluster status infor-

mation.

• qhost displays the status of Univa Grid Engine hosts, queues and jobs from the host
perspective.

• qstat shows information about jobs, queues, and queue instances.

• qconf command, which is mainly used by the administrator for configuring the cluster,
also shows the configuration of the cluster. Use it to understand why the cluster makes

some decisions or is in a specific state.

3.2 Hosts and Queues

Univa Grid Engine monitoring and management centers around two main configuration

object types: hosts and queues.

Grid Engine Users’s Guide v 8.6.17 5

3 Displaying Univa Grid Engine Status Information

• A host represents a node in the cluster, physical or virtual. Each host has an associated

host configuration object that defines the properties of that host. In addition, Univa

Grid Engine has a global host configuration object that defines default values for all

host properties. Any host that either does not have an associated host configuration

object or has a host configuration object that does not set values for all host properties

will inherit all or some property values from the global host configuration object.

• A queue is a set of global configuration properties that govern all instances of the

queue. An instance of a queue on a specific host inherits its queue configuration

properties from the queue. A queue instance may, however, explicitly override some

or all of the queue configuration properties.

• Jobs are executed on a host within the context of a queue instance. Pending jobs wait

in a global pending job list where they wait to be assigned by the scheduler to a queue

instance. Univa Grid Engine provides the following commands to display the states of

these objects or to configure them:

• qhost shows the cluster status from the execution host perspective.

• qstat shows the cluster status from the job or queue perspective.

• qconf displays the cluster configuration and allows administrators to change configu-
rations.

qhost

The qhost command shows the cluster status from the execution host perspective.

qhost

Calling just qhost by itself prints a table that lists the following information about the
execution hosts:

• architectures

• number of cores

• current load

• total RAM

• currently used RAM

• total swap space

• currently used swap space

The line “global” appears there, representing the global host, a virtual configuration object

that provides defaults for all attributes of the real hosts that are not filled by real data. It’s

listed here just for completeness.

qhost -q -j

Grid Engine Users’s Guide v 8.6.17 6

3 Displaying Univa Grid Engine Status Information

• Using the -j option, qhost lists all currently running jobs underneath the hosts on
which they are running.

• Using the -q option, qhost displays all queues that have instances on a host, under-
neath the corresponding host.

Using both switches at once, it’s possible to get a comprehensive overview over the cluster

in a relatively compact output format. To prevent lengthy output in larger clusters, qhost

provides several options to filter the output.

• Use the -h hostlist option to display only the information about the listed hosts.

• Use the -l attr=val,... option to specify more complex filters. See section Re-
questable Attributes for more details.

For example, the following command displays only hosts of a specific architecture:

qhost -l arch=lx-amd64

• Use the -u user,... option to show only jobs from the specified users. This implies
the -j option.

• Use the -F [attribute] option to list either all the resources an execution host pro-
vides or just the selected ones.

See the qhost(1)man page for a detailed description of all options.

qstat

To view the cluster from the queue or job perspective, use the qstat command.

• Without any option, the qstat command lists all jobs of the current user.

• The -ext option can be added to most options of qstat and causes more attributes to
be printed.

• With the -u "*" option (the asterisk must be enclosed in quotes!), the jobs of all
users are displayed. With -u <user,...> only the jobs of the specified users are listed.

• With the -g c option, the status of all cluster queues is displayed.

• The -j <job-ID> option prints information about the specified job of the current user.
With a list of job-IDs or "*", this information is printed for the specified jobs or all jobs
of the current user.

• The -j option without any job-ID prints information about all pending jobs of the
current user.

qstat -f

Grid Engine Users’s Guide v 8.6.17 7

3 Displaying Univa Grid Engine Status Information

• The -f option shows the full output of all queue instances with the jobs running in
them. By default, just the jobs of the current user; add -u "*" to get all jobs listed for
all users.

qstat -F

• The -F option shows all resources the queue instances provide.

The following are several options to filter queues:

• By name (-q queue_list)

• By any provided resource (-l resource_list)

• By queue state (-qs {a|c|d|o|s|u|A|C|D|E|S})

• By parallel environments (-pe pe_list)

• Access permissions for specific users (-U user_list) and to filter out queue instances
where no job of the current or specified user(s) is running.

Jobs can also be filtered.

• by state (-s {p|r|s|z|S|N|P|hu|ho|hs|hd|hj|ha|h|P|N|S|a})

• by the job submitting user (-u user_list)

3.3 Requestable Resources

Each Univa Grid Engine configuration object (global, queue, host) has several resources

whose values are either reported by loadsensors, reported by the OS or configured by a

manager or an operator.

These are resources such as the execution host architecture, number of slots in the queue,

current load of the host or configured complex variables. A job can request to be executed in

an environment with specific resources. These requests can be hard or soft: a hard request

denotes that a job can run only in an environment that provides at least the requested

resource, while a soft request specifies that the job should be executed in an environment

that fulfills all soft requests as much as possible.

In all commands, no matter if they are made for job submission or if they are made for

listing the provided resources, the option to specify the requested resources is always -l
<resource>=<value>. Each resource has a value of one of the following types:

• boolean

• integer

• float

• string

Grid Engine Users’s Guide v 8.6.17 8

3 Displaying Univa Grid Engine Status Information

• regular expression string

For example, the following command submits a job that can run on hosts with Solaris on a

64-bit Sparc CPU:

qsub -l arch=sol-sparc64 job

By default, this is a hard request. To specify it as a soft request, the command would change

to the following:

qsub -soft -l arch=sol-sparc64 job

The -soft option denotes that all following -l resource=value requests should be seen as
soft requests. With -hard the requests can be switched back to hard requests. This can be
switched as often as necessary, as shown in the following example:

qsub -soft -l arch=sol-sparc64 -hard -l slots>4 -soft -l h_vmem>300M -hard -l num_cpus>2 job

Using wildcards in resource requests is also permitted.

qsub -l arch="sol-*" job

This command requests the job to be scheduled on any Solaris host.

Note

The quotes (") are necessary to prevent the shell from expanding the asterisk "*".

To show the list of resources a queue instance provides, enter the following command:

qstat -F

Sample qstat output is shown below.

queuename qtype resv/used/tot. load_avg arch states

all.q@kailua BIPC 0/0/40 1.14 lx-amd64

hl:arch=lx-amd64
hl:num_proc=4
hl:mem_total=7.683G
hl:swap_total=7.996G
hl:virtual_total=15.679G
hl:load_avg=1.140000
hl:load_short=1.150000
hl:load_medium=1.140000
hl:load_long=1.310000
hl:mem_free=2.649G

Grid Engine Users’s Guide v 8.6.17 9

3 Displaying Univa Grid Engine Status Information

hl:swap_free=7.996G
hl:virtual_free=10.645G
hl:mem_used=5.034G
hl:swap_used=0.000
hl:virtual_used=5.034G
hl:cpu=17.100000
hl:m_topology=SCTTCTT
hl:m_topology_inuse=SCTTCTT
hl:m_socket=1
hl:m_core=2
hl:m_thread=4
hl:np_load_avg=0.285000
hl:np_load_short=0.287500
hl:np_load_medium=0.285000
hl:np_load_long=0.327500
qf:qname=all.q
qf:hostname=kailua
qc:slots=40
qf:tmpdir=/tmp
qf:seq_no=0
qf:rerun=0.000000
qf:calendar=NONE
qf:s_rt=infinity
qf:h_rt=infinity
qf:s_cpu=infinity
qf:h_cpu=infinity
qf:s_fsize=infinity
qf:h_fsize=infinity
qf:s_data=infinity
qf:h_data=infinity
qf:s_stack=infinity
qf:h_stack=infinity
qf:s_core=infinity
qf:h_core=infinity
qf:s_rss=infinity
qf:h_rss=infinity
qf:s_vmem=infinity
qf:h_vmem=infinity
qf:min_cpu_interval=00:05:00

The resource list consists of three fields: <type>:<name>=<value>. The type is composed of
two letters.

• The first letter denotes the origin of this resource.

– h for host
– q for queue

• The second letter denotes how the value is acquired.

– l for load sensor

Grid Engine Users’s Guide v 8.6.17 10

3 Displaying Univa Grid Engine Status Information

– f for fixed, i.e. statically configured in the cluster, host or queue configuration
– c for constant

3.4 User Access Permissions and Affiliations

In Univa Grid Engine, there are three general categories of users:

User Category Description

managers By default, there is always one default manager, the Univa Grid

Engine administrator. Managers have universal permission in Univa

Grid Engine.

operators Operators have the permissions to modify the state of specific

objects, e.g. enable or disable a queue.

other users All other users only have permission to submit jobs, to modify and

delete their own jobs, and to get information about the cluster status.

Table 2: User Categories

Managers are defined by the global manager list, which can be accessed through qconf

options:

Option Description

-am user_list add user(s) to the manager list

-dm user_list delete user(s) from the manager list

-sm show a list of all managers

Table 3: qconf Options for Updating the Global Manager List

qconf provides the similar options for operators:

Option Description

-ao user_list add user to the operator list

-do user_list delete user from the operator list

-so show a list of all operators

Table 4: qconf Options for Updating the Operator List

By default, all users known to the operating system can use Univa Grid Engine as normal

Grid Engine Users’s Guide v 8.6.17 11

3 Displaying Univa Grid Engine Status Information

users. On Windows hosts, all normal Windows Active Domain users can use Univa Grid

Engine as normal users if the short names are the same as on the UNIX hosts. Whenever a

user name is used or configured in Univa Grid Engine, use the short name of the Windows

Active Domain user name.

Each object of Univa Grid Engine uses the configuration values set in user_list and
xuser_list to determine who is allowed to use an object. The user_list explicitly al-
lows access, whereas the xuser_list explicitly disallows access. This access is controlled
through corresponding, but opposite, values. For example, the lists have values acl and
xacl which function exactly opposite of each other. If a user is disallowed in the global
cluster configuration (by using xacl), he may not use any object of Univa Grid Engine: he
may not submit any job, but he can still get information from the cluster using qstat, qhost
and so on.

Users mentioned in the user_list are allowed to use Grid Engine, but users mentioned
in the xuser_list are disallowed. If a user is mentioned in both, the xuser_list takes
precedence, so he is disallowed to use the object. If a user_list is defined, only users
mentioned there are allowed to use the object. If a xuser_list is defined and the user_list
is undefined, then all users except the ones mentioned in the xuser_list are allowed to use
the object.

Note

The user_list and xuser_list accept only user sets, not user names. So it’s necessary
to define user sets before using these options of qconf.

Option Description

-au user_list listname_list add user(s) to user set list(s)

-Au fname add user set from file

-du user_list listname_list delete user(s) from user set list(s)

-dul listname_list delete user set list(s) completely

-mu listname_list modify the given user set list

-Mu fname modify user set from file

-su listname_list show the given user set list

-sul show a list of all user set lists

Table 5: qconf Options for Updating the User List

A user set contains more information than just the names of the users in this set: see the

man page access_list(5) for details. User sets can be defined by specifying UNIX users
and primary UNIX groups, which must be prefixed by an @ sign. There are two types of user
sets: Access lists (type ACL) and departments (type DEPT). Pure access lists allow enlisting
any user or group in any access list.

When using departments, each user or group may only be enlisted in one department, in

order to ensure a unique assignment of jobs to departments. For the jobs whose users do

Grid Engine Users’s Guide v 8.6.17 12

4 Submitting Batch Jobs

not match with any of the users or groups enlisted under entries, the default department is

assigned.

Subject Man Pages

user_list and xuser_list sge_conf(5), queue_conf(5), host_conf(5) and sge_pe(5)

acl and xacl lists project(5)

user lists format access_list(5)

options to specify users and

user sets

qconf(1)

Table 6: Man Pages to See for Further Reference

4 Submitting Batch Jobs

4.1 What is a Batch Job?

A batch job is a single, serial work package that gets executed without user interaction. This

work package can be any executable or script that can be executed on the execution host.

Attached to this work package are several additional attributes that define how Univa Grid

Engine handles the job and that influence the behavior of the job.

4.2 How to Submit a Batch Job

From the command line, batch jobs are submitted using the qsub command. Batch jobs can

also be submitted using the deprecated GUI qmon or using the DRMAA (Distributed Resource
Management Application) interface.

Note

qmon and DRMAA are not supported on Windows submit hosts.

Batch jobs are typically defined by a script file located at the submit host. This script

prepares several settings and starts the application that does the real work. Univa Grid

Engine transfers this script to the execution host, where it gets executed. Alternately, the

script can be read from stdin instead of from a file. For a job that is just a binary to be

executed on the remote host, the binary is typically already installed on the execution host,

and therefore does not need to be transferred from the submit host to the execution host.

Note

The default shell for a queue is /bin/sh. As the Grid Engine Administrator you can
change the default shell by modifying the shell parameter in the queue configuration
(qconf -mq <queue-name>).

Grid Engine Users’s Guide v 8.6.17 13

4 Submitting Batch Jobs

4.2.1 Example 1: A Simple Batch Job

To submit a simple batch job that uses a job script and default attributes, run the following

command:

qsub $SGE_ROOT/examples/jobs/simple.sh

Note

See Windows examples for how to submit the following examples jobs from or to a

Windows host.

If this command succeeds, the qsub command should print the following note:

Your job 1 ("simple.sh") has been submitted

Now check the status of the job while the job is running:

qstat

If qstat does not print any information about this job, it has already finished. Note that
simple.sh is a short running job. The output of the job will be written to ~/simple.sh.o1
and the error messages to ~/simple.sh.e1, where ~ is the home directory on the execution
host of the user who submitted the job.

4.2.2 Example 2: An Advanced Batch Job

qsub allows several attributes and requirements to be defined using command line options
at the time the job is submitted. These attributes and requirements can affect how the job

gets handled by Univa Grid Engine and how the job script or binary is executed. For example,

the following command defines these attributes of the job:

qsub -cwd -S /bin/xyshell -i /data/example.in -o /results/example.out -j
y example.sh arg1 arg2

Option Description

-cwd The job will be executed in the same directory as the current

directory

-S /bin/xyshell The shell /bin/xyshell will be used to interpret the job script.

-i /data/example.in The file “/data/example.in” on the execution host will be used as

input file for the job.

-o

/results/example.out

The file “/results/example.out” on the execution host will be

used as output file for the job.

-j y Job output to stderr will be merged into the

“/results/example.out” file.

Grid Engine Users’s Guide v 8.6.17 14

4 Submitting Batch Jobs

Option Description

example.sh arg1 arg2 The job script is “example.sh” must exist locally and gets

transferred to the execution host by Univa Grid Engine. arg1

and arg2 will be passed to this job script.

Table 7: Explanation of Command Line Options in Example 2

4.2.3 Example 3: Another Advanced Batch Job

qsub -N example3 -P testproject -p -27 -l a=lx-amd64 example.sh

Option Description

-N example2 The job will get the name “example3” instead of the default name

which is the name of the job script.

-P testproject The job will be part of the project “testproject”.

-p -27 The job will be scheduled with a lower priority than by default.

-l a=lx-amd64 The job can get scheduled only to a execution host that provides the

architecture “lx-amd64”.

example.sh The job script without any arguments.

Table 8: Explanation of Command Line Options in Example 3

4.2.4 Example 4: A Simple Binary Job

qsub -b y firefox

The -b y option tells Univa Grid Engine that this is a binary job; the binary does already exist
on the execution host and doesn’t have to be transferred by Univa Grid Engine from the

submit to the execution host.

See the qsub(5)man page for an explanation of all possible qsub options.

4.3 Specifying Requirements

qsub provides three options to specify the requirements that must be fulfilled in order to run
the job on the execution host. These are requirements like the host architecture, available

memory, required licenses, specific script interpreters installed, and so on.

These resource requirements are specified on the qsub command line using the -l option.
For example, to ensure the job gets scheduled only to a host that provides the architecture

type lx-x86, i.e. Linux on a x86 compatible 32 bit CPU, issue the following qsub option:

Grid Engine Users’s Guide v 8.6.17 15

4 Submitting Batch Jobs

qsub -l arch=lx-x86 my_job.sh

Specifying several requirements at once and using wildcards inside a requirement is possible,

as in the following example:

qsub -l a="sol-*|*-amd" -l h="node??" job.sh

This example specifies that the job requests must be scheduled to a host whose architecture

string starts with sol- and/or ends with amd64. At the same time, the hostname of the
execution host must start with node and have exactly two additional trailing characters.

There are two different kinds of requests, hard and soft requests.

• A hard request must be fulfilled in order to schedule the job to the host.

• A soft request should be fulfilled. Grid Engine tries to fulfill as many soft requests as

possible.

By default, all requests specified by the -l option are hard requests. The -soft option
switches the behaviour: starting with the -soft option, all subsequent requests are consid-
ered soft requests. A “-hard” option in the command line switches back to hard requests.

“-hard” and “-soft” can be specified as often as necessary.

Example:

qsub -soft -l host="node??" -hard -l h_vmem=2G -l arch="sol*" -soft -l cpu=4

As described above in the section Requestable Resources, the attributes that are provided

by all queue instances can be listed using qstat:

qstat -F

To specify a particular queue instance, use the -q option:

qstat -F -q all.q@kailua

As an alternative to specifying job requirements on the command line each time a job is

submitted, default requirements can be specified by the job submitting user and the Univa

Grid Engine administrator.

Requirements are evaluated in the following order:

• Request files

• Requests in job script

• Command line

• Options defined later (e.g., at command line) override options defined earlier (e.g., in

the job script)

Note

Note that soft and hard requirements are collected separately.

Grid Engine Users’s Guide v 8.6.17 16

4 Submitting Batch Jobs

4.3.1 Request Files

Request files allow options to be set automatically for all jobs submitted. Request files are

read in the following order:

• The global request file $SGE_ROOT/$SGE_CELL/default/sge_request

• The private user request file $HOME/.sge_request

• The application specific request file $cwd/.sge_request

• The qsub command line

Since the request files are read in order, any option defined in more than one of them is

overridden by the last-read occurrence, except for options that can be used multiple times

on a command line. The resulting options are used as if they were written in the qsub

command line, while the real qsub command line is appended to it, again overriding options

that were specified in one of the three files. At any time, the “-clear” option can be used to

discard all options that were defined previously.

In these request files, each line can contain one or more options in the same format as in

the qsub command line. Lines starting with the hash sign (#) in the first column are ignored.

See the sge_request(5) man page for additional information.

4.3.2 Requests in the Job Script

Note

Specifying requests in a Windows job script is not supported.

Submit options can also be defined in the jobs script. Each line of the job script that starts

with #$ or with the prefix that is defined using the -C option is considered to be a line that
contains submit options, as in the following example:

#!/bin/sh

#$ -P testproject
#$ -o test.out -e test.err

echo "Just a test"

These options are read and parsed before the job is submitted and are added to the job

object. The location where in the job script these options are defined does not matter, but

the order matters - if two options override each other, the last one wins.

Grid Engine Users’s Guide v 8.6.17 17

5 Using Job Classes to Prepare Templates for Jobs

5 Using Job Classes to Prepare Templates for Jobs

When Univa Grid Engine jobs are submitted then various submit parameters have to be

specified either as switches which are passed to command line applications or through

corresponding selections in the graphical user interface. Some of those switches define the

essential characteristics of the job, others describe the execution context that is required so

that the job can be executed successfully. Another subset of switches needs to be specified

only to give Univa Grid Engine the necessary hints on how to handle a job correctly so that it

gets passed through the system quickly without interfering with other jobs.

In small and medium sized clusters with a limited number of different job types this is not

problematic. The number of arguments that have to be specified can either be written into

default request files, embedded into the job script, put into an option file (passed with -@ of

qsub) or they can directly be passed at the command line.

Within larger clusters or when many different classes of jobs should run in the cluster

then the situation is more complex and it can be challenging for a user to select the right

combination of switches with appropriate values. Cluster managers need to be aware of the

details of the different job types that should coexist in the cluster so that they can setup

suitable policies in line with the operational goals of the site. They need to instruct the users

about the details of the cluster setup so that these users are able to specify the required

submission requests for each job they submit.

Job classes have been introduced in Univa Grid Engine 8.1 to be able to:

• Specify job templates that can be used to create new jobs.

• Reduce the learning curve for users submitting jobs.

• Avoid errors during the job submission or jobs which may not fit site requirements.

• Ease the cluster management for system administrators.

• Provide more control to the administrator for ensuring jobs are in line with the cluster

set-up.

• Define defaults for all jobs that are submitted into a cluster.

• Improve the performance of the scheduler component and thereby the throughput in

the cluster.

5.1 Examples Motivating the Use of Job Classes

Imagine you have users who often make mistakes specifying memory limits for a specific

application called memeater. You want to make it easy for them by specifying meaningful

defaults but you also want to give them the freedom to modify the memory limit default

according to their needs. Then you could use the following job class configuration (only an

excerpt of the full configuration is shown):

Grid Engine Users’s Guide v 8.6.17 18

5 Using Job Classes to Prepare Templates for Jobs

jcname memeater
variant_list default
owner NONE
user_lists NONE
xuser_lists NONE
...
CMDNAME /usr/local/bin/memeater
...
l_hard {~}{~}h_vmem=6GB
...

Without going into the specifics of the job class syntax, the above job class will use a default

of 6 GB for the memory limit of the job. It will however be feasible for users to modify this

limit. Here are two examples for how users would submit a job based on this job class. The

first maintaining the default, the second modifying it to 8 GB (again without going into the

details of the syntax being used here):

qsub -jc memeater
qsub -jc memeater -l h_vmem=8GB

Now assume a slightly modified scenario where you want to restrict a certain group of users

called novice to only use the preset of 6 GB while another group of users called expert can

either use the default or can modify the memory limit. The following job class example

would accomplish this. And the trick is that job classes support so called variants as well as

user access lists:

jcname memeater
variant_list default, advanced
owner NONE
user_lists novice, [advanced=expert]
xuser_lists NONE
...
CMDNAME /usr/local/bin/memeater
...
l_hard h_vmem=6GB,[{~}advanced={~}h_vmem=6GB]
...

With this job class configuration, the novice users would only be able to submit their job

using the first command example below while expert users could use both examples:

qsub -jc memeater
qsub -jc memeater.advanced -l h_vmem=8GB

The two use cases for job classes above are only snippets for all the different scenarios to

which job classes may be applied and they only provide a glimpse onto the features of job

classes. The next sections describe all attributes forming a job class object, commands that

are used to define job classes as well as how these objects are used during job submission

Grid Engine Users’s Guide v 8.6.17 19

5 Using Job Classes to Prepare Templates for Jobs

to form new jobs. A set of examples with growing functionality will illustrate further use

cases. This will be followed by describing how job classes can be embedded with other

parts of a Univa Grid Engine configuration to extract the maximum benefit from job classes.

Finally, specific means for monitoring job class jobs will be shown.

5.2 Defining Job Classes

A job class is a new object type in Univa Grid Engine. Objects of this type can be defined by

managers and also by users of a Univa Grid Engine Cluster to prepare templates for jobs.

Those objects can later on be used to create jobs.

Like other configuration objects in Univa Grid Engine each job class is defined by a set of

configuration attributes. This set of attributes can be divided into two categories. The first

category contains attributes defining a job class itself and the second category all those

which form the template which in turn eventually gets instantiated into new jobs.

5.2.1 Attributes describing a Job Class

Following attributes describe characteristics of a job class:

Attribute Value specification

jcname The jcname attribute defines a name that uniquely identifies a job

class.

Grid Engine Users’s Guide v 8.6.17 20

5 Using Job Classes to Prepare Templates for Jobs

Attribute Value specification

Please note that NO_JC and ANY_JC are reserved keywords that cannot

be used as names for new job classes. There is one particular job class

with the special name template. It acts as template for all other job

classes and the configuration of this job class template can only be

adjusted by users having the manager role in Univa Grid Engine. This

gives manager accounts control about default settings, some of which

also can be set so that they must not be changed (see below for more

information on how to enforce options).

variant_list Job classes may, for instance, represent an application type in a cluster.

If the same application should be started with various different

settings in one cluster or if the possible resource selection applied by

Univa Grid Engine system should depend on the mode how the

application should be executed then it is possible to define one job

class with multiple variants. A job class variant can be seen as a copy of

a job class that differs only in some aspects from the original job class.

The variant_list job class attribute defines the names of all existing Job

Class variants. If the keyword NONE is used or when the list contains

only the word default then the job class has only one variant. If

multiple names are listed here, that are separated by commas, then

the job class will have multiple variants. The default variant always has

to exist. If the variant_list attribute does not contain the word default

then it will be automatically added by the Univa Grid Engine system.

Other commands that require a reference of a job class can either use

the jcname to refer to the default variant of a job class or they can

reference a different variant by combining the jcname with the name

of a specific variant. Both names have to be separated by a dot (.)

character.

owner_list The owner_list attribute denotes the ownership of a job class. As

default the user that creates a job class will be the owner. Only this

user and all managers are allowed to modify or delete the job class

object. Managers and owners can also add additional user names to

this list to give these users modify and delete permissions. If a

manager creates a job class then the owner_list will be NONE to

express that only managers are allowed to modify or delete the

corresponding job class. Even if a job class is owned only by managers

it can still be used to create new jobs. The right to derive new jobs

from a job class can be restricted with the user_list and xuser_list

attributes explained below.

Grid Engine Users’s Guide v 8.6.17 21

5 Using Job Classes to Prepare Templates for Jobs

Attribute Value specification

user_list The user_list job class parameter contains a comma separated list of

Univa Grid Engine user access list names or user names. User names

have to be prefixed with a percent character (%). Each user referenced

in the user_list and each user in at least one of the enlisted access lists

has the right to derive new jobs from this job class using the -jc switch

of one of the submit commands. If the user_list parameter is set to

NONE (the default) any user can use the job class to create new jobs if

access is not explicitly excluded via the xuser_lists parameter

described below. If a user is contained both in an access list enlisted in

xuser_lists and user_lists the user is denied access to use the job class.

xuser_list The xuser_list job class contains a comma separated list of Univa Grid

Engine user access list names or user names. User names have to be

prefixed with a percent character (%). Each user referenced in the

xuser_list and each user in at least one of the enlisted access lists is

not allowed to derive new jobs from this job class. If the xuser_list

parameter is set to NONE (the default) any user has access. If a user is

contained both in an access list enlisted in xuser_lists and user_lists

the user is denied access to use the job class.

Table 9: Job Class Attributes

5.2.2 Example 1: Job Classes - Identity, Ownership, Access

Below you can find an example for the first part of a sleeper job class. It will be enhanced in

each of the following chapters to illustrate the use of job classes.

jcname sleeper
variant_list NONE
owner NONE
user_lists NONE
xuser_lists NONE
...

sleeper is the unique name that identifies the job class (jcname sleeper). This job class
defines only the default variant because no other variant names are specified (variant_list
NONE). The job class does not specify an owner (owner NONE) as a result it can only be changed
or deleted by users having the manager role. Managers and all other users are allowed to

derive new jobs from this job class. Creating new jobs is not restricted (user_lists NONE;
user_lists NONE).

5.2.3 Attributes to Form a Job Template

Additionally to the attributes mentioned previously each job class has a set of attributes that

form a job template. In most cases the names of those additional attributes correspond

Grid Engine Users’s Guide v 8.6.17 22

5 Using Job Classes to Prepare Templates for Jobs

to the names of command line switches of the qsub command. The value for all these

additional attributes might either be the keyword UNSPECIFIED or it might be the same value
that would be passed with the corresponding qsub command line switch.

All these additional job template attributes will be evaluated to form a virtual command line

when a job class is used to instantiate a new job. All attributes for which the corresponding

value contains the UNSPECIFIED keyword will be ignored whereas all others define the submit
arguments for the new job that will be created.

All template attributes can be divided in two groups. There are template attributes that

accept simple attribute values (like a character sequence, a number or the value yes or no)

and there are template attributes that allow to specify a list of values or a list of key/value

pairs, like the list of resource requests a job has or the list of queues where a job might get

executed.

The table below contains all available template attributes. The asterisk character (*) tags
all attributes that are list based. Within the description the default for each attribute is

documented that will be used when the keyword UNSPECIFIED is used in the job class
definition.

Attribute Value specification

a Specifies the time and date when a job is eligible for execution. If

unspecified the job will be immediately eligible for execution. Format

of the character sequence is the same as for the argument that might

be passed with qsub -a.
A Account string. The string sge will be used when there is no account

string specified or when it is later on removed from a job template or

job specification.

ac * List parameter defining the name/value pairs that are part of the job

context. Default is an empty list.

ar Advance reservation identifier used when jobs should be part of an

advance reservation. As default no job will be part of an advance

reservation.

b yes or no to express if the command should be treated as binary or

not. The default for this parameter is no, i.e. the job is treated as a

script.

binding Specifies all core binding specific settings that should be applied to a

job during execution. Binding is disabled as default.

CMDARG * Defines a list of command line arguments that will be passed to

CMDNAME when the job is executed. As default this list is empty.

CMDNAME * Specified either the job script or the command name when binary

submission is enabled (b yes). Please note that script embedded flags

within specified job scripts will be ignored.

c_interval Defines the time interval when a checkpoint-able job should be

checkpointed. The default value is 0.

c_occasion Letter combination that defines the state transitions when a job

should be triggered to write a checkpoint. Default is ‘n’ which will

disable checkpointing.

Grid Engine Users’s Guide v 8.6.17 23

5 Using Job Classes to Prepare Templates for Jobs

Attribute Value specification

ckpt Checkpoint environment name which specifies how to checkpoint the

job. No checkpoint object will be referenced as default.

cwd Specifies the working directory for the job. Path aliasing will not be

used when this value is specified in a job class. In case of absence the

home directory of the submitting user will be used as directory where

the job is executed.

dl Specifies the deadline initiation time for a job (see the chapter about

deadline urgency in the administrators guide for more information).

As default jobs have do defined deadline.

e * List parameter that defines the path for the error file for specific

execution hosts. As default the file will be stored in the home directory

of the submitting user and the filename will be the combination of the

job name and the job id.

h yes or no to indicate if a job should be initially in hold state. The

default is no.

hold_jid * List parameter to create initial job dependencies between new jobs

and already existing ones. The default is an empty list.

hold_jid_ad * List parameter to create initial array job dependencies between new

array jobs and already existing ones. The default is an empty list.

i * List parameter that defines the path for the input file for specific

execution hosts.

j yes or no to show if error and output stream of the job should be

joined into one file. Default is no.

js Defines the job share of a job relative to other jobs. The default is 0.

l_hard * List parameter that defines hard resource requirements of a job in the

form of name/value pairs. The default is an empty list.

l_soft * List parameter defining soft requests of a job. The default is an empty

list.

mbind Specifies memory binding specific settings that should be applied to a

job during execution. Memory binding is disabled as default.

m Character sequence that defines the circumstances when mail that is

related to the job should be send. The default is ‘n’ which means no

mails should be send.

M * list parameter defining the mail addresses that will be used to send job

related mail. The default is an empty list.

masterq * List parameter that defines the queues that might be used as master

queues for parallel jobs. The default is an empty list.

Grid Engine Users’s Guide v 8.6.17 24

5 Using Job Classes to Prepare Templates for Jobs

Attribute Value specification

N Default name for jobs. For jobs specifying a job script which are

submitted with qsub or the graphical user interface the default value

will be the name of the job script. When the script is read from the

stdin stream of the submit application then it will be STDIN. qsh and

qlogin jobs will set the job name to INTERACTIVE. qrsh jobs will use the

first characters of the command line up to the first occurrence of a

semicolon or space character.

notify yes or no to define if warning signals will be send to a jobs if it exceeds

any limit. The default is no

now yes or no to specify if created jobs should be immediate jobs. The

default is no.

o * List parameter that defines the path for the output file for specific

execution hosts.

P Specifies the project to which this job is assigned.

p Priority value that defines the priority of jobs relative to other jobs.

The default priority is 0.

pe_name Specifies the name of the parallel environment that will be used for

parallel jobs. PE name pattern are not allowed. As default there is no

name specified and as a result the job is no parallel job.

pe_range Range list specification that defines the amount of slots that are

required to execute parallel jobs. This parameter must be specified

when also the pe_name parameter is specified.

q_hard * List of queues that can be used to execute the job. Queue name

pattern are not allowed. The default is an empty list.

q_soft * List of queues that are preferred to be used when the job should be

executed. Queue name pattern are not allowed. The default is an

empty list.

R yes or no to indicate if a reservation for this job should be done. The

default is no. Reservation is never done for immediate jobs, i.e. jobs

submitted using the -now yes option. The default_duration is assumed

as runtime for jobs that have neither -l h_rt=. . . nor -l s_rt=. . . nor -l

d_rt=. . . specified. Please note that regardless of the reservation

request, job reservation might be disabled using max_reservation.

r yes or no to identify if the job will be rerun-able. The default is no.

S * List parameter that defines the path of the shell for specific execution

hosts. The default is an empty list.

shell yes or no to specify if a shell should be executed for binary jobs or if

the binary job should be directly started. The default is yes

t Defines the task ID range for array jobs. Jobs are no array jobs as

default.

V yes or no. yes causes that all environment variables active during the

submission of a job will be exported into the environment of the job.

Grid Engine Users’s Guide v 8.6.17 25

5 Using Job Classes to Prepare Templates for Jobs

Attribute Value specification

v * List of environment variable names and values that will be exported

into the environment of the job. If also V yes is specified then the

variable values that are active during the submission might be

overwritten.

Table 10: Job Class Attributes to Form a Job Template

5.2.4 Example 2: Job Classes - Job Template

Second version of the sleeper job class defining job template attributes for the default

variant:

jcname sleeper
variant_list NONE
owner NONE
user_lists NONE
xuser_lists NONE
A UNSPECIFIED
a UNSPECIFIED
ar UNSPECIFIED
b yes
binding UNSPECIFIED
c_interval UNSPECIFIED
c_occasion UNSPECIFIED
CMDNAME /bin/sleep
CMDARG 60
ckpt UNSPECIFIED
ac UNSPECIFIED
cwd UNSPECIFIED
display UNSPECIFIED
dl UNSPECIFIED
e UNSPECIFIED
h UNSPECIFIED
hold_jid UNSPECIFIED
i UNSPECIFIED
j UNSPECIFIED
js UNSPECIFIED
l_hard UNSPECIFIED
l_soft UNSPECIFIED
m UNSPECIFIED
M UNSPECIFIED
masterq UNSPECIFIED
mbind UNSPECIFIED
N Sleeper
notify UNSPECIFIED

Grid Engine Users’s Guide v 8.6.17 26

5 Using Job Classes to Prepare Templates for Jobs

now UNSPECIFIED
o UNSPECIFIED
P UNSPECIFIED
p UNSPECIFIED
pe_name UNSPECIFIED
q_hard UNSPECIFIED
q_soft UNSPECIFIED
R UNSPECIFIED
r UNSPECIFIED
S /bin/sh
shell UNSPECIFIED
V UNSPECIFIED
v UNSPECIFIED

Most of the job template attributes are UNSPECIFIED. As a result the corresponding attributes

will be ignored and the defaults of the submit client will be used when new jobs are created.

When a job is derived from this job class then it will create a job using binary submission (b

yes) to start the script /bin/sleep (CMDNAME /bin/sleep). 60 will be passed as command line

argument to this script (CMDARG 60). The name of the job that is created will be Sleeper (N

Sleeper) and the shell /bin/sh will be used to start the command (S /bin/sh). The definition

of the sleeper job class is complete. Now it can be used to submit new jobs:

> qsub -jc sleeper
Your job 4097 ("Sleeper") has been submitted

> qsub -S /bin/sh -N Sleeper -b y /bin/sleep
Your job 4098 ("Sleeper") has been submitted

Job 4097 is derived from a job class whereas job 4098 is submitted conventionally. The

parameters specified in the sleeper job class are identical to the command line arguments

that are passed to qsub command to submit the jobs. As a result both jobs are identical.

Both use the same shell and job command and therefore they will sleep for 60 seconds after

start. The only difference between the two jobs is the submit time and the job id. Users that

try to change both jobs after they have been submitted will also encounter an additional

differences. It is not allowed to change the specification of job 4097. The reason for this is

explained in the next chapter.

5.2.5 Access Specifiers to Allow Deviation

Access specifiers are character sequences that can be added to certain places in job class

specifications to allow/disallow operations that can be applied to jobs that are derived from

that job class. They allow you to express, for instance, that job options defined in the jobs

class can be modified, deleted or augmented when submitting a job derived from a job class.

This means the job class owner can control how the job class can be used by regular users

being allowed to derive jobs from this job class. This makes using job classes simple for the

end user (because of a restricted set of modifications). It also avoids errors as well as the

need to utilize Job Submission Verifiers for checking on mandatory options.

Grid Engine Users’s Guide v 8.6.17 27

5 Using Job Classes to Prepare Templates for Jobs

By default, if no access specifiers are used, all values within job classes are fixed. This means

that jobs that are derived from a job class cannot be changed. Any attempt to adjust a job

during the submission or any try to change a job after it has been submitted (e.g. with qalter)

will be rejected. Also managers are not allowed to change the specification of defined in a

job class when submitting a job derived from the job class.

To soften this restriction, job class owners and users having the manager role in a job class

can add access specifiers to the specification of a job class to allow deviation at certain

places. Access specifiers might appear before each value of a job template attribute and

before each entry in a list of key or key/value pairs. The preceding access specifier defines

which operations are allowed with the value that follows.

The full syntax for a job class template attribute is defined as <jc_templ_attr>:

<jc_templ_attr> := <templ_attr> | <list_templ_attr>
<templ_attr> := <attr_name> “ “ <attr_access_specifier>(<attr_value>|"UNSPECIFIED")
<list_templ_attr> := <list_attr_name> “ “ <attr_access_specifier> <list_attr_value>
<list_attr_value> := <access_specifier> ((<list_entry> [“,” <access_specifier>

<list_entry>, ...]) | "UNSPECIFIED")
<attr_access_specifier> := <access_specifier>

Please note the distinction between <attr_access_specifier> and <access_specifier>. is also

an but it is the first one that appears in the definition of list based job template attributes

and it is the reason why two access specifiers might appear one after another. The first

access specifier regulates access to the list itself whereas the following ones define access

rules for the entries in the list they are preceding. These access specifiers () are available:

Access Specifier Description

The absence of an access specifier indicates that the

corresponding template attribute (or sublist entry) is fixed.

Any attempt to modify or delete a specified value or any

attempt to add a value where the keyword UNSPECIFIED was

used will be rejected. It is also not allowed to add additional

entries to lists of list based attributes if a list is fixed.

{-} Values that are tagged with the {-} access specifier are

removable. If this access specifier is used within list based

attributes then removal is only allowed if the list itself is also

modifiable. If all list entries of a list are removable then also

the list itself must be removable so that the operation will be

successful.

{~} Values that are prefixed with the {~} access specifier can be

changed. If this access specifier is used within list based

attributes then the list itself must also be modifiable.

{~-} or {-~} The combination of the {-} and {~} access specifiers indicates

that the value it precedes is modifiable and removable.

Grid Engine Users’s Guide v 8.6.17 28

5 Using Job Classes to Prepare Templates for Jobs

Access Specifier Description

{+}UNSPECIFIED or

{+. . . }

The {+} access specifier can only appear in combination with

the keyword UNSPECIFIED or before list attribute values but

not within access specifiers preceding list entries. If it appears

before list attribute values it can also be combined with the {~}

and {-} access specifiers. This access specifier indicates that

something can be added to the specification of a job after it

has been submitted. For list based attributes it allows that

new list entries can be added to the list.

Table 11: Available Access Specifiers

5.2.6 Example 3: Job Classes - Access Specifiers

Here follows the third refinement of the sleeper job class giving its users more flexibility:

jcname sleeper
variant_list NONE
owner NONE
user_lists NONE
xuser_lists NONE
A UNSPECIFIED
a UNSPECIFIED
ar UNSPECIFIED
b yes
binding UNSPECIFIED
c_interval UNSPECIFIED
c_occasion UNSPECIFIED
CMDNAME /bin/sleep
CMDARG 60
ckpt UNSPECIFIED
ac UNSPECIFIED
cwd UNSPECIFIED
display UNSPECIFIED
dl UNSPECIFIED
e UNSPECIFIED
h UNSPECIFIED
hold_jid UNSPECIFIED
i UNSPECIFIED
j UNSPECIFIED
js UNSPECIFIED
l_hard {~+}{~}a=true,b=true,{-}c=true
l_soft {+}UNSPECIFIED
m UNSPECIFIED
M UNSPECIFIED
masterq UNSPECIFIED

Grid Engine Users’s Guide v 8.6.17 29

5 Using Job Classes to Prepare Templates for Jobs

mbind UNSPECIFIED
N {~-}Sleeper
notify UNSPECIFIED
now UNSPECIFIED
o UNSPECIFIED
P UNSPECIFIED
p UNSPECIFIED
pe_name UNSPECIFIED
q_hard UNSPECIFIED
q_soft UNSPECIFIED
R UNSPECIFIED
r UNSPECIFIED
S /bin/sh
shell UNSPECIFIED
V UNSPECIFIED
v UNSPECIFIED

Now it is allowed to modify or remove the name of sleeper jobs (N {~-}Sleeper).
Users deriving jobs from this class are allowed to add soft resource requests (l_soft
{+}UNSPECIFIED). New hard resource requests can be added and the ones which are
specified within the job class can be adjusted (l_hard {~+}...) but there are ad-

ditional restrictions: The access specifiers preceding the resource requests (l_hard
...{~}a=true,b=true,{-}c=true) allow the modification of the resource a, the deletion of
the resource c whereas the value of resource b is fixed (no access specifier). Users that try

to submit or modify jobs that would violate one of the access specifiers will receive an error

message and the request is rejected.

Here are some examples for commands that will be successful:

> qsub -jc sleeper -N MySleeperName
> qsub -jc sleeper -soft -l new=true
> qsub -jc sleeper -l a=false,b=true,new=true

Here you can see some commands that will be rejected:

> qsub -jc sleeper /path/to/my_own_sleeper (CMDNAME is not modifiable)
> qsub -jc sleeper -l a=false,b=false,new=true (l_hard has requested resource b=true.

This cannot be changed)
> qsub -jc sleeper -S /bin/tcsh (S job template attribute does not allow to modify

the shell)

5.2.7 Different Variants of the same Job Class

Job classes represent an application type in a cluster. If the same application should be

started with various different settings or if the possible resource selection applied by the

Univa Grid Engine system should depend on the mode how the application should be

executed then it is possible to define one job class with multiple variants. So think of it

as a way to use the same template for very similar types of jobs, yet with small variations.

Grid Engine Users’s Guide v 8.6.17 30

5 Using Job Classes to Prepare Templates for Jobs

The variant_list job class attribute defines the names of all existing job class variants. If the

keyword NONE is used or when the list contains only the word default then the job class

has only one variant. If multiple names are listed here, separated by commas, then the job

class will have multiple variants. The default variant always has to exist. If the variant_list

attribute does not contain the word default then it will be automatically added by the Univa

Grid Engine system upon creating the job class.

Attribute settings for the additional job class variants are specified similar to the attribute

settings of queue instances or queue domains of cluster queues. The setting for a variant

attribute has to be preceded by the variant name followed by an equal character (“=”) and

enclosed in brackets (“[“ and “]”).

The position where access specifiers have to appear is slightly different in this case. The

next example will show this (see the l_soft and N attributes).

5.2.8 Example 4: Job Classes - Multiple Variants

The following example shows the excerpt of the sleeper job class with three different variants

jcname sleeper
variant_list default,short,long
owner NONE
user_lists NONE
xuser_lists NONE
A UNSPECIFIED
a UNSPECIFIED
ar UNSPECIFIED
b yes
binding UNSPECIFIED
c_interval UNSPECIFIED
c_occasion UNSPECIFIED
CMDNAME /bin/sleep
CMDARG 60,[short=5],[long=3600]
ckpt UNSPECIFIED
ac UNSPECIFIED
cwd UNSPECIFIED
display UNSPECIFIED
dl UNSPECIFIED
e UNSPECIFIED
h UNSPECIFIED
hold_jid UNSPECIFIED
i UNSPECIFIED
j UNSPECIFIED
js UNSPECIFIED
l_hard {~+}{~}a=true,b=true,{-}c=true
l_soft {+}UNSPECIFIED,[{~+}long={~}d=true]
m UNSPECIFIED
M UNSPECIFIED
masterq UNSPECIFIED

Grid Engine Users’s Guide v 8.6.17 31

5 Using Job Classes to Prepare Templates for Jobs

mbind UNSPECIFIED
N {~-}Sleeper,[{~-}short=ShortSleeper],[long=LongSleeper]
notify UNSPECIFIED
now UNSPECIFIED
o UNSPECIFIED
P UNSPECIFIED
p UNSPECIFIED
pe_name UNSPECIFIED
q_hard UNSPECIFIED
q_soft UNSPECIFIED
R UNSPECIFIED
r UNSPECIFIED
S /bin/sh
shell UNSPECIFIED
V UNSPECIFIED
v UNSPECIFIED

The sleeper job class has now three different variants (variant_list default,short,long). To

reference a specific job class variant the name of the job class has to be combined with the

name of the variant. Both names have to be separated by a dot (“.”). If the variant name is

omitted then automatically the default variant is referenced.

> qsub -jc sleeper
Your job 4099 ("Sleeper") has been submitted

> qsub -jc sleeper.short
Your job 4100 ("ShortSleeper") has been submitted

> qsub -jc sleeper.long
Your job 4101 ("LongSleeper") has been submitted

The returned message from the submit commands already indicates that there are

differences between the three jobs. The jobs have different names. Compared to

the other jobs, the job 4101 has an additional soft resource request d=true (l_soft
...,[{~+}long={~}d=true]). Job 4100 that was derived from the sleeper.short job class
variant has no soft requests. Nothing was explicitly specified here for this variant and

therefore it will implicitly use the setting of the sleeper.default job class variant (l_soft
{+}UNSPECIFIED,...). Moreover, the job name (see the N attribute) can be modified or
removed for the default and short variant but is fixed for the long variant.

5.2.9 Enforcing Cluster Wide Requests with the Template Job Class

After a default installation of Univa Grid Engine 8.6.17 there exists one job class with the

name template. This job class has a special meaning and it cannot be used to create new
jobs. Its configuration can only be adjusted by users having the manager role. This jobs

class acts as parent job class for all other job classes that are created in the system.

The values of job template attributes in this template job class and the corresponding access

specifiers restrict the allowed settings of all corresponding job template attributes of other

Grid Engine Users’s Guide v 8.6.17 32

5 Using Job Classes to Prepare Templates for Jobs

job classes. As default the {+}UNSPECIFIED add access specifier and keyword is used in the
template job class in combination with all job template attributes. Due to that any setting is

allowed to other job class attributes after Univa Grid Engine 8.6.17 has been installed.

This parent-child relationship is especially useful when all jobs that are submitted into a

cluster are derived from job classes. Managers might then change the settings within the

template. All other existing job classes that violate the settings will then switch into the

configuration conflict state. The owners of those job classes have to adjust the settings

before new jobs can be derived from them. All those users that intend to create a new job

class that violates the settings of the template job class will receive an error.

You will also want to use the template job class to enforce restrictions on the access specifiers

which can be used in job classes. Since any job class, whether create by a manager account

or by regular users, is derived from the template job class those derived job classes are

bound to stay within the limits defined by the template job class. So parameters which have

been defined as fixed in the template job class, for instance, cannot be modified in any job

class created by a manager or user. Likewise, parameters which have a preset value but are

configured to allow deletion only cannot be modified in derived job classes. The following

table shows the allowed transitions:

Access Specifier in Template JC Allowed Access Specifier in Child JC

.

UNSPECIFIED UNSPECIFIED

{~}. . . {~}. . .

. . .

{-}. . . {-}. . .

{~}. . .

UNSPECIFIED

. . .

{-~}. . . {-~}. . .

{-}. . .

{~}. . .

UNSPECIFIED

. . .

{+}. . . {+}. . .

{-~}. . .

{-}. . .

{~}. . .

UNSPECIFIED

. . .

Grid Engine Users’s Guide v 8.6.17 33

5 Using Job Classes to Prepare Templates for Jobs

Access Specifier in Template JC Allowed Access Specifier in Child JC

Table 12: Allowed Access Specifier Transitions

5.3 Relationship Between Job Classes and Other Objects

To fully integrate job classes into the already existing Univa Grid Engine system the possibility

is provided to create new relations between current object types (like queues, resource

quotas, JSV) and job classes.

5.3.1 Resources Available for Job Classes

The profile of a job is defined by the resource requirements and other job attributes. Queues

and host objects define possible execution environments where jobs can be executed. When

a job is eligible for execution then the scheduler component of the Univa Grid Engine system

tries to find the execution environment that fits best according to all job specific attributes

and the configured policies so that this job can be executed.

This decision making process can be difficult and time consuming especially when certain

jobs having special resource requirements should only be allowed to run in a subset of

the available execution environments. The use of job classes might help here because job

classes will give the scheduler additional information on which execution environments

will or will not fit for a job. The need to evaluate all the details about available resources

of an execution environment and about the job’s requirements will be reduced or can be

completely eliminated during the decision making process.

This is achieved by an additional parameter in the queue configuration which provides a

direct association between queues and one or multiple job classes. This parameter is called

jc_list and might be set to the value NONE or a list of job classes or job class variant
names. If a list of names is specified then the special keyword ANY_JC and/or NO_JCmight be
used within the list to filter all those jobs that are in principle allowed to run in this queues.

The following combinations are useful:

Value Description

NONE No job may enter the queue.

ANY_JC Jobs may enter the queue that were derived from a job class.

NO_JC Only jobs may enter the queue that were not derived from a job

class.

ANY_JC, NO_JC Any job, independent if it was derived from a job class or not, may

be executed in the queue. This is the default for any queue that is

created in a cluster.

<list of JC names> Only those jobs may get scheduled in the queue if they were

derived from one of the enlisted job classes.

Table 13: Useful Values for the jc_list Attribute of a Queue

Grid Engine Users’s Guide v 8.6.17 34

5 Using Job Classes to Prepare Templates for Jobs

This relationship helps the scheduler during the decision making to eliminate queues early

without the need to further look at all the details like resource requirements. Managers of

Grid Engine Clusters may want to take care that there is at least one queue in the cluster

available that use the ANY_JC keyword. Otherwise jobs of users who have defined their own
job class will not get cluster resources. Also at least one queue using the NO_JC keyword
may need to be available. Otherwise conventionally submitted jobs will not get scheduled.

5.3.2 Defining Job Class Limits

Resource quota sets can be defined to influence the resource selection in the scheduler.

The jcs filter within a resource quota rule may contain a comma separated list of job class
names. This parameter filters for jobs requesting a job class in the list. Any job class not

in the list will not be considered for the resource quota rule. If no jcs filter is used, all job
classes and jobs with no job class specification match the rule. To exclude a job class from

the rule, the name can be prefixed with the exclamation mark (!). ‘!*’ means only jobs with

no job class specification.

Example: Resource Quota Set Using a Job Class Filter

`name max_virtual_free_on_lx_hosts_for_app_1_2`

`description "quota for virtual_free restriction"`

`enabled true`

`limit users {user1,user2} hosts {@lx_host} jcs {app1, app2} to vf=6G`

`limit users {*} hosts {@lx_host} jcs {other_app, !*} to vf=4G`

The example above restricts user1 and user2 to 6G virtual_free memory for all jobs
derived from of job class app1 or app2 on each Linux host part of the @lx_hosts host
group. All users that either do not derive from a job class or request the job class named

other_app will have a limit of 4G.

5.3.3 JSV and Job Class Interaction

During the submission of a job multiple Job Submission Verifiers can be involved that verify

and possibly correct or reject a job. With conventional job submission (without job classes)

each JSV will see the job specification of a job that was specified at the command line via

switches and passed parameters or it will see the job parameters that were chosen within

the dialog of the GUI.

When Jobs are derived from a job class then the process of evaluation via JSV scripts is the

same but the job parameters that are visible in client JSVs are different. A client JSV will only

see the requested job class via a parameter named jc and it will see all those parameters
that were specified at the command line. All parameters that are defined in the job class

itself cannot be seen.

Grid Engine Users’s Guide v 8.6.17 35

5 Using Job Classes to Prepare Templates for Jobs

Job classes will be resolved within the sge_qmaster process as soon as a request is received
that tries to submit a job that should be derived from a job class. The following steps are

taken (simplified process):

1) Create a new job structure

2) Fill job structure with defaults values

3) Fill job structure with values defined in the job class
(This might overwrite default values)

4) Fill job structure with values defined at the command line
(This might overwrite default values and values that were defined in the job class)

5) Trigger server JSV to verify and possibly adjust the job
(This might overwrite default values, JC values and values specified at the command line)

6) Check if the job structure violates access specifiers

If the server JSV changes the jc parameter of the job in step 5 then the submission process

restarts from step 1 using the new job class for step 3.

Please note that the violation of the access specifiers is checked in the last step. As result a

server JSV is also not allowed to apply modifications to the job that would violate any access

specifiers defined in the job class specification.

5.4 Commands to Adjust Job Classes

5.4.1 Creating, Modifying and Deleting Job Classes

Job Classes can be created, modified or deleted with the following commands.

• qconf -ajc <jcname>

This is the command to add a new job class object. It opens an editor and shows the default

parameters for a job class. After changing, saving necessary values and closing the editor, a

new job class is created.

• qconf -Ajc <filename>

Adds a new job class object with its specification being stored in the specified file.

• qconf -djc <jcname>

Deletes a job class object with the given name.

• qconf -mjc <jcname>

Grid Engine Users’s Guide v 8.6.17 36

5 Using Job Classes to Prepare Templates for Jobs

Opens an editor and shows the current specification of the job class with the name <jcname>.
After changing attributes, saving the modifications and closing the editor, the object is

modified accordingly.

Note

The qconf commands that open an editor are not supported on Windows hosts.

Instead, redirect the output of the corresponding qconf -s... command to a file, edit
it there and apply the changes using qconf -M..., or simply use a UNIX host.

• qconf -Mjc <filename>

Modifies a job class object from file.

• qconf -sjc <jcname>

Shows the current specification of the job class with the name <jcname>.

• qconf -sjcl

Shows all names of existing job class objects that exist in a cluster.

5.4.2 States of Job Classes

Job Classes have a combined state that is the result of following the sub states: en-

abled/disabled, no conflict/configuration conflict

Grid Engine Users’s Guide v 8.6.17 37

5 Using Job Classes to Prepare Templates for Jobs

The enabled/disabled state is a manual state. A state change from enabled to disabled can

be triggered with the qmod -djc <jcname> command. The command qmod -ejc <jcname>
command can be used to trigger a state change from disabled to enabled. Job Classes in the

disabled state cannot be used to create new jobs.

The no conflict/configuration conflict state is an automatic state that cannot be changed

manually. Job classes that do not violate the configuration of the template job class are in
the no conflict state. A job class in this state can be used to create new jobs (if it is also in

enabled state). If the template job class or a derived job class is changed so that either a
configuration setting or one of the access specifiers of the template job class is violated then
the derived job class will automatically switch from the no conflict into the configuration
conflict state. This state will also be left automatically when the violation is eliminated.

5.5 Using Job Classes to Submit New Jobs

Job Classes that are in the enabled and no conflict state can be used to create new jobs. To

do this a user has to pass the -jc switch in combination with the name of a job class to
a submit command like qsub. If the user has access to this job class then a new job will
be created and all job template attributes that are defined in the job class will be used to

initialize the corresponding parameters in the submitted job.

Depending on the access specifiers that are used in the job class it might be allowed to

adjust certain parameters during the submission of the job. In this case additional switches

Grid Engine Users’s Guide v 8.6.17 38

5 Using Job Classes to Prepare Templates for Jobs

and parameters might be passed to the submit command. All these additionally passed

parameters will be used to adjust job parameters that where derived from the job class.

Additionally to the typical switches that are used to define job parameters there is a set

of switches available that allow to remove parameters or to adjust parts of list based

parameters in a job specification. The same set of switches can also be used with the

modification command qalter to adjust job parameters after a job has already been created.

• qsub/qalter -clearp <attr_name>

The -clearp switch allows to remove a job parameter from the specification of a job as if it

was never specified. What this means depends on the job parameter that is specified by

<attr_name>. For all those attributes that would normally have a default value this default

value will be set for all others the corresponding attribute will be empty. Parameter names

that can be specified for <attr_name> are all the ones that are specified in the table above

showing job template attribute names.

• qsub/qalter -clears <list_attr_name> <key>

This switch allows to remove a list entry in a list based attribute of a job specification.

<list_attr_name> might be any name of a job template attribute that is tagged with the

asterisk (*) in the table above. <key> has to be the name of the key of the sublist entry for

key/value pairs or the value itself that should be removed when the list contains only values

• qsub/qalter -adds <list_attr_name> <key> <value>

-adds adds a new entry to a list based parameter.

• qsub/qalter -mods <list_attr_name> <key> <value>

The -mods switch allows to modify the value of a key/value pair within a list based job

parameter.

5.6 Example: Submit a Job Class Job and Adjust Some Parameters

Assume that the following job class is defined in you cluster:

jcname sleeper
variant_list default,short,long
owner NONE
user_lists NONE
xuser_lists NONE
A UNSPECIFIED
a UNSPECIFIED
ar UNSPECIFIED
b yes

Grid Engine Users’s Guide v 8.6.17 39

5 Using Job Classes to Prepare Templates for Jobs

binding UNSPECIFIED
c_interval UNSPECIFIED
c_occasion UNSPECIFIED
CMDNAME /bin/sleep
CMDARG 60,[short=5],[long=3600]
ckpt UNSPECIFIED
ac UNSPECIFIED
cwd UNSPECIFIED
display UNSPECIFIED
dl UNSPECIFIED
e UNSPECIFIED
h UNSPECIFIED
hold_jid UNSPECIFIED
i UNSPECIFIED
j UNSPECIFIED
js UNSPECIFIED
l_hard {~+}{~}a=true,b=true,{-}c=true
l_soft {+}UNSPECIFIED,[{~+}long={~}d=true]
m UNSPECIFIED
M UNSPECIFIED
masterq UNSPECIFIED
mbind UNSPECIFIED
N {~-}Sleeper,[{~-}short=ShortSleeper],[{~-}long=LongSleeper]
notify UNSPECIFIED
now UNSPECIFIED
o UNSPECIFIED
P UNSPECIFIED
p UNSPECIFIED
pe_name UNSPECIFIED
q_hard UNSPECIFIED
q_soft UNSPECIFIED
R UNSPECIFIED
r UNSPECIFIED
S /bin/sh
shell UNSPECIFIED
V UNSPECIFIED
v UNSPECIFIED

Now it is possible to submit jobs and to adjust the parameters of those jobs during the

submission to fit specific needs:

1) qsub -jc sleeper -N MySleeper
2) qsub -jc sleeper.short -clearp N
3) qsub -jc sleeper.short -clears l_hard c -adds l_hard h_vmem 5G
4) qsub -jc sleeper.long -soft -l res_x=3

The first job that is submitted (1) will be derived from the sleeper.default job class variant

but this job will get the name MySleeper.

Grid Engine Users’s Guide v 8.6.17 40

5 Using Job Classes to Prepare Templates for Jobs

Job (2) uses the sleeper.short job class but the job name is adjusted. The -clearp switch
will remove the job name that is specified in the job class. Instead it will get the default job

name that would have been assigned without specifying the name in any explicit way. This

will be derived from the last part of the script command that will be executed. This script is

/bin/sleep. So the job name of the new job will be sleep.

When job (3) is created the list of hard resource requirements is adjusted. The resource

request c is removed and the h_vmem=5G resource request is added.

During the submission of job (4) The list of soft resource request is completely redefined.

The use of the -l will completely replace already defined soft resource requests if any have
been defined.

Please note that it is not allowed to trigger operations that would violate any access specifiers.

In consequence, the following commands would be rejected:

5) qsub -jc sleeper -hard -l res_x 3 (This would remove the a and b resource requests)
6) qsub -jc sleeper /bin/my_sleeper 61 (Neither CMDNAME nor the CMDARGs are modifiable)

5.7 Status of Job Classes and Corresponding Jobs

The -fjc switch of the qstat command can be used to display all existing job classes and
jobs that have been derived from them.

> qstat -fjc
job class O U states

sleeper.default X
42145 0.55500 Sleeper user r 05/15/2012 15:30:47 1
42146 0.55500 Sleeper user r 05/15/2012 15:30:47 1
42147 0.55500 Sleeper user r 05/15/2012 15:30:47 1
42148 0.55500 Sleeper user r 05/15/2012 15:30:47 1

sleeper.long X d

sleeper.short X
42149 0.55500 ShortSleep user r 05/15/2012 15:30:57 1
42150 0.55500 ShortSleep user r 05/15/2012 15:30:57 1
42151 0.55500 ShortSleep user r 05/15/2012 15:30:57 1

template.default

The O column shows if the user executing the qstat command is the owner of the job class

and the U-column is tagged with an X if the corresponding job class can be used by that user

to derive new jobs.

The states column will show the character d if the corresponding job class variant is in

disabled state and a c if the class is in the configuration conflict state. In all other cases the

column will be empty. This indicates that the job class variant can be used to create a new

job.

Grid Engine Users’s Guide v 8.6.17 41

6 Monitoring and Controlling Jobs

6 Monitoring and Controlling Jobs

6.1 Getting Status Information on Jobs

The command line tool qstat delivers all the available status information for jobs. qstat
supplies various possibilities to present the available information.

Command Description

qstat Without options, qstat lists all jobs but without any queue status
information.

qstat -f The -f option causes qstat to display a summary information of
all cause including its load accompanied by the list of all queued

as also all pending jobs.

qstat -ext The -ext option causes qstat to displays usage information and
the ticket consumption of each job.

qstat -j <job_id> The -j option causes qstat to display detailed information of a
currently queued job.

Table 14: The Most Common Ways to Use qstat

Examples:

qstat
job-ID prior name user state submit/start at queue slots ja-task-ID

4 0.55500 job1 user1 r 04/28/2011 09:35:34 all.q@host1 1
5 0.55500 job2 user1 r 04/28/2011 09:35:34 all.q@host2 1
6 0.55500 job3 user1 r 04/28/2011 09:35:34 all.q@host2 1

qstat -f
queuename qtype resv/used/tot. load_avg arch states

all.q@host1 BIPC 0/3/10 0.04 lx-amd64
16 0.55500 Sleeper user1 r 04/28/2011 09:36:44 1
18 0.55500 Sleeper user1 r 04/28/2011 09:36:44 1
23 0.55500 Sleeper user1 r 04/28/2011 09:36:44 1

all.q@host2 BIPC 0/3/10 0.04 lx-x86
15 0.55500 Sleeper user1 r 04/28/2011 09:36:44 1
19 0.55500 Sleeper user1 r 04/28/2011 09:36:44 1
22 0.55500 Sleeper user1 r 04/28/2011 09:36:44 1

all.q@host3 BIPC 0/3/10 0.04 sol-amd64
14 0.55500 Sleeper user1 r 04/28/2011 09:36:44 1
17 0.55500 Sleeper user1 r 04/28/2011 09:36:44 1

Grid Engine Users’s Guide v 8.6.17 42

6 Monitoring and Controlling Jobs

21 0.55500 Sleeper user1 t 04/28/2011 09:36:44 1

all.q@host4 BIPC 0/3/10 1.35 lx-amd64
20 0.55500 Sleeper user1 r 04/28/2011 09:36:44 1
24 0.55500 Sleeper user1 r 04/28/2011 09:36:44 1
25 0.55500 Sleeper user1 r 04/28/2011 09:36:44 1

It is also possible to be informed by the Univa Grid Engine system via mail on the status

change of a job. To use this feature it necessary to set the -m option while submitting the
job. This option is available for qsub, qsh, qrsh, qlogin and qalter.

Option Description

b Send mail at the beginning of a job.

e Send mail at the end of a job.

a Send mail when job is aborted or rescheduled.

s Send mail when job is suspended.

n Send no mail (default).

Table 15: Mail Options to Monitor Jobs

Example: Univa Grid Engine will send mail at the beginning as well as the end of the job:

qsub -m be test_job.sh

6.2 Deleting a Job

To delete a job, the qdel binary is used.

Parameter Description

-f <job_id[s]> Forces the deletion a job even if the responsible execution

host does not respond.

<job_id> -t <range> Deletes specific tasks of an array job. It is also possible to

delete a specific range of array jobs.

-u <user_list> Deletes all job of the specified user.

Table 16: Optional qdel Parameters

The behavior of how Univa Grid Engine handles a forced deletion can be altered by using

the following qmaster parameters. This option can be set via qconf -mconf as qmas-

ter_params.

Grid Engine Users’s Guide v 8.6.17 43

6 Monitoring and Controlling Jobs

Parameter Description

ENABLE_FORCED_QDEL If this parameter is set, users are allowed to

force job deletion on their own jobs.

Otherwise only the Univa Grid Engine

managers are allowed to perform those

actions.

ENABLE_FORCED_QDEL_IF_UNKNOWN If this parameter is set, qdel <job_id> will

automatically invoke a forced job deletion if

the host, where the job is running, is of

unknown status.

Table 17: qmaster Parameters for Forced Job Deletion

Examples:

Delete all jobs in the cluster (only possible for Univa Grid Engine managers):

qdel -u "*"

Delete tasks 2-10 out of array job with the id 5:

qdel 5 -t 2-10

Forced deletion of jobs 2 and 5:

qdel -f 2 5

6.3 Re-queuing a Job

A job can be rescheduled only if its rerun flag is set. This can be done either at time of
submission via the -r option of qsub, or belatedly via the -r option of qalter as well as via
the rerun configuration parameter for queues. This rerun configuration can be set with
qconf -mq .

Examples:

qsub -r yes <job_script>
qalter -r yes <job_id>

There are two different ways to reschedule jobs.

Examples:

Reschedule a job:

qmod -rj <job_id[s]>

Grid Engine Users’s Guide v 8.6.17 44

6 Monitoring and Controlling Jobs

Reschedule all jobs in a queue:

qmod -rq <queue|queue_instance>

Rescheduled jobs are designated Rr (e.g. shown by qstat).

Example:

qstat -f
queuename qtype resv/used/tot. load_avg arch states

all.q@host1 BIPC 0/2/10 0.01 lx-amd64

53 0.55500 Sleeper user1 Rr 05/02/2011 15:31:10 2

all.q@host2 BIPC 0/2/10 0.01 lx-x86

53 0.55500 Sleeper user1 Rr 05/02/2011 15:31:10 2

all.q@host3 BIPC 0/1/10 0.03 sol-amd64

53 0.55500 Sleeper user1 Rr 05/02/2011 15:31:10 1

all.q@host4 BIPC 0/0/10 0.06 lx-amd64

6.4 Modifying a Waiting Job

To change attributes of a pending job qalter is used.

qalter is able to change most of the characteristics of a job even those which were set as

embedded flags in the script files. Consult the submit(1) main page in regards to the options

that can be altered (e.g. the job script).

6.4.1 Altering Job Requirements

It is also possible to alter the requirements of a pending job which have been defined via

the -l flag at time or submission.

Example:

Submit a job to host1

qsub -l h=host1 script.sh

Alter the host-requirement of this job (with the assumed job-id 45) to host2

qalter -l h=host2 45

Grid Engine Users’s Guide v 8.6.17 45

6 Monitoring and Controlling Jobs

Note

By altering requested requirements the with -l, keep in mind that the requirements

become the new requirements thus the requirements which do not require change

must be re-requested.

Example:

Submit a job with the requirement to run on host1 and and on queue2:

qsub -l h=host1,q=queue2 script.sh

Alter the host-requirement of this job (with the assumed job-id 45) to host5 and re-request

queue2 as requirement

qalter -l h=host5,q=queue2 45

If queue2 is NOT stated in the qalter-call, the job will run on any available queue in host5.

6.5 Changing Job Priority

To change the priority of a job the -p option of qalter can be used. It is possible to alter the

priority within the range between -1023 and 1024 whereas a negative number decreases

priority and a positive one to increases it. If not submitted differently, the default priority is

0. As previously mentioned, a user can only alter his own jobs and in this case, a user is only

able to decrease the priority of a job. To increase the priority, the user needs to be either

Univa Grid Engine administrator or Univa Grid Engine manager.

Examples:

Increase the job priority of job 45:

qalter -p 5 45

Decrease the job priority of 45:

qalter -p -5 45

6.6 Obtaining the Job History

To get the history of a job and its accounting information use qacct.

qacct parses the accounting file written by qmaster and lists all available information for

a given job. This includes accounting data such as wall-clock time, cpu-time or memory

consumption as also the host where job ran and e.g. the exit-status of the job script. The

default Univa Grid Engine accounting file resists in <sge_root>/<cell>/common/accounting.

See accounting(5) for more information e.g. how the file is composed and what information

is stored in it.

Example: Show the accounting information of job 65:

Grid Engine Users’s Guide v 8.6.17 46

6 Monitoring and Controlling Jobs

qacct -j 65
==
qname all.q
hostname host1
group users
owner user1
project NONE
department defaultdepartment
jobname Sleeper
jobnumber 65
taskid undefined
account sge
priority 0
qsub_time Mon May 9 14:27:32 2011
start_time Mon May 9 14:27:35 2011
end_time Mon May 9 14:28:20 2011
granted_pe mytestpe
slots 5
failed 0
exit_status 0
ru_wallclock 45
ru_utime 0.026
ru_stime 0.019
ru_maxrss 1856
ru_ixrss 0
ru_ismrss 0
ru_idrss 0
ru_isrss 0
ru_minflt 10649
ru_majflt 0
ru_nswap 0
ru_inblock 0
ru_oublock 24
ru_msgsnd 0
ru_msgrcv 0
ru_nsignals 0
ru_nvcsw 101
ru_nivcsw 26
cpu 0.045
mem 0.000
io 0.000
iow 0.000
maxvmem 17.949M
arid undefined

Grid Engine Users’s Guide v 8.6.17 47

7 Other Job Types

7 Other Job Types

7.1 Array Jobs

Array jobs are, as mentioned in Types of Workloads being Managed by Univa Grid Engine,

those that start a batch job or a parallel job multiple times. Those simultaneously-run jobs

are called tasks. Each job receives an unique ID necessary to identify each of them and

distribute the workload over the array job.

Submit an array job:

The default output- and error-files are job_name.[o|e]job_id and job_name.[o|e]job_id.task_id.
This means that Univa Grid Engine creates an output- and an error-file for each task plus

one for the super-ordinate array-job. To alter this behavior use the -o and -e option of qsub.

If the redirection options of qsub are use (-o and/or -e), the results of the individual will be

merged into the defined one.

Pseudo env variable Description

$USER User name of the submitting user

$HOME Home directory of the submitting user

$JOB_ID ID of the job

$JOB_NAME Name of the job

$HOSTNAME Hostname of the execution host

$SGE_TASK_ID ID of the array task

Table 18: Available Pseudo Environment Variables

The -t option of qsub indicates the job as an array job. The -t option has the following syntax:

qsub -t n[-m[:s]] <batch_script>

-t Option Syntax

• n - indicates the start-id.

• m - indicates the max-id.

• s - indicates the step size.

Examples:

qsub -t 10 array.sh - submits a job with 1 task where the task-id is 10.

qsub -t 1-10 array.sh - submits a job with 10 tasks numbered consecutively from 1 to 10.

qsub -t 2-10:2 array.sh - submits a jobs with 5 tasks numbered consecutively with step size 2

(task-ids 2,4,6,8,10).

Grid Engine Users’s Guide v 8.6.17 48

7 Other Job Types

Besides the pseudo environment variables already mentioned, the following variables are

also exposed which can be used in the script file:

Pseudo env variable Description

$SGE_TASK_ID ID of the array task

$SGE_TASK_FIRST ID of the first array task

$SGE_TASK_LAST ID of the last array task

$SGE_TASK_STEPSIZE step size

Table 19: Pseudo Environment Variables Available for Scripts

Example of an array job script:

#!/bin/sh

redirect the output-file of the batch job
#$ -o /tmp/array_out.$JOB_ID
redirect the error-file of the batch job
#$ -e /tmp/array_err.$JOB_ID

starts data_handler with data.* as input file
/tmp/data_handler -i /tmp/data.$SGE_TASK_ID

Alter an array job:

It is possible to change the attributes of array jobs. But the changes will only affect the

pending tasks of an array job. Already running tasks are untouched.

Array job concurrency

The maximum number of concurrently running tasks of an array job can be limited via the

-tc switch of qsub (see -tc in submit(1)).

So called concurrent array jobs are jobs where either all tasks can be started in one schedul-

ing interval or no task is started at all (the whole job stays pending). A concurrent array job

is submitted using the -tcon switch of qsub (see -tcon in submit(1)). Immediate concurrent

array jobs (qsub -tcon y -now y) will be rejected if not all tasks can be started immediately.

Configuration variables (see sge_conf(5)):

• max_aj_instances indicates the maximum number of instances of an array job which

can run simultaneously.

• max_aj_tasks indicates the maximum number of tasks a array job can have.

• qmaster_params MIN_PENDING_ENROLLED_TASKS can be used to define for how many

pending array tasks individual per task tickets are calculated per job by the Univa Grid

Engine policy engine.

Grid Engine Users’s Guide v 8.6.17 49

7 Other Job Types

• qmaster_params MAX_TCON_TASKS is used to limit the number of tasks a concurrent

array job can have, value 0 (default) disables concurrent array jobs.

Example:

Submit a job with 20 tasks but only 10 of then can run concurrently. qsub -t 1-20 -tc 10

array.sh

7.2 Interactive Jobs

Usually, Univa Grid Engine uses its own built-in mechanism to establish a connection to the

execution host. It is possible to change this to e.g. ssh or telnet, of course.

Configuration variable Description

qlogin_command Command to execute on local host if qlogin is started.

qlogin_daemon Daemon to start on execution host if qlogin is started.

rlogin_command Command to execute on local host if qrsh is started without

a command name as argument to execute remotely.

rlogin_daemon Daemon to start on execution host if qrsh is started without

a command name as argument to execute remotely.

rsh_command Command to execute on local host if qrsh is started with a

command name as argument to execute remotely.

rsh_daemon Daemon to start on execution host if qrsh is started with a

command name as argument to execute remotely.

Example of a qlogin configuration:

qlogin_command /usr/bin/telnet
qlogin_daemon /usr/sbin/in.telnetd

The configured commands (qlogin_command, rlogin_command and rsh_command) are

started with the execution host, the port number and, in case of rsh_command, also the

command name to execute as arguments.

Example:

/usr/bin/telnet exec_host 1234

Consult sge_conf(5) for more information.

Note

Interactive jobs are not support from or to Windows hosts. One exception is the qrsh
with command, e.g. qrsh hostname. This works also from and to Windows hosts.

Grid Engine Users’s Guide v 8.6.17 50

7 Other Job Types

7.2.1 qrsh and qlogin

qrsh without a command name as argument and qlogin submit an interactive job to the

queuing system which starts a remote session on the execution host where the current local

terminal is used for I/O. This is similar to rlogin or a ssh session without a command name.

qrsh with a command executes the command on the execution host and redirects the I/O to

the current local terminal. By default, qrsh with command does not open a pseudo terminal

(PTY), other than qlogin and qrsh without command, on the execution host. It simply pipes

the in- and output to the local terminal. This behavior can by changed via the -pty yes option

as there are applications that rely on a PTY.

Those jobs can only run in INTERACTIVE queues unless the jobs are not explicitly marked as

non-immediate job using the -now no option.

7.2.2 qmake

qmake facilitates the possibility to distribute Makefile processing in parallel over the Univa

Grid Engine. It is based on GNU Make 3.78.1. All valid options for qsub and qrsh are also

available for qmake. Options which has to be passed to GNU Make has to be placed after

the “–”-separator.

Syntax:

qmake [options] -- [gmake options]

Typical examples how to use qmake:

qmake -cwd -v PATH -pe compiling 1-10 -- -debug

This call changes the remote execution host into the current working directory, exports the

$PATH environment variable and requests between 1 and 10 slots in the parallel environ-

ment compiling. This call is listed as one job in the Univa Grid Engine system.

This means that Univa Grid Engine starts up to 10 qrsh sessions depending on available slots

and what is needed by GNU Make. The option -debug will, as it is after the “–”-separator, be

passed to the GNU Make instances.

As there is no special architecture requested, Univa Grid Engine assumes the one set in the

environment variable $SGE_ARCH. If it is not set, qmake will produce a warning and start

the make process on any available architecture.

qmake -l arch=lx26-amd64 -cwd -v PATH --

Other than the example above, qmake is not bound to a parallel environment in this case.

qmake will start an own qrsh job for every GNU Make rule listed in the Makefiles.

Furthermore, qmake support two different modes of invocation:

Grid Engine Users’s Guide v 8.6.17 51

7 Other Job Types

• Interactive mode: qmake invoked by command line implicitly submits a qrsh-job. On

this master machine the parallel make procedures will be started and qmake will

distribute the make targets and steps to the other hosts which are chosen.

• Batch mode: If qmake with the –inherit option is embedded in a simple batch script

the qmake process will inherit all resource requirements from the calling batch job.

Eventually declared parallel environments (pe) or the -j option in the qmake line within
the script will be ignored.

Example:

#!/bin/sh
qmake --inherit --

Submit:

qsub -cwd -v PATH -pe compiling 1-10 <shell_script>

7.2.3 qsh

qsh opens a xterm via an interactive X-windows session on the execution host. The display

is directed either to the X-server indicated by the $DISPLAY environment variable or the

one which was set by the -display qsh command line option. If no display is set, Univa Grid

Engine tries to direct the display to 0.0 of the submit host.

7.3 Parallel Jobs

A parallel job runs simultaneously across multiple execution hosts. To run parallel jobs

within the Univa Grid Engine system it is necessary to set up parallel environments (pe).

It is customary is to have several of such parallel environments e.g. for the different MPI

implementations which are used or different ones for tight and loose integration. To take

advantage of parallel execution, the application has to support this. There are a dozen

software implementations that support parallel tasks like OpenMPI, LAM-MPI, MPICH or PVM.

supports two different ways of executing parallel jobs:

• Loose Integration

Univa Grid Engine generates a custom machine file listing all execution hosts chosen for the

job. Univa Grid Engine does not control the parallel job itself and its distributed tasks. This

means that there is no tracking of resource consumption of the tasks and no way to delete

runaway tasks. However, it is easy to set up and nearly all parallel application technologies

are supported.

• Tight Integration

Univa Grid Engine takes control of the whole parallel job execution. This includes spawning

and controlling of all parallel tasks. Unlike the Loose Integration Univa Grid Engine is able

to track the resource usage correctly including all parallel tasks as also to delete runaway

tasks via qdel. However the parallel applications has to support the tight Univa Grid Engine

integration (e.g. OpenMPI which has to be built with –enable-sge).

Grid Engine Users’s Guide v 8.6.17 52

7 Other Job Types

7.3.1 Parallel Environments

Setup a parallel environment

qconf -ap my_parallel_env

This will create a parallel environment with the name my_parallel_env. In the opening
editor it is possible to change the properties of the pe.

Property Description

pe_name The name of the parallel environment. This one has to be

specified at job submission.

slots The maximum number of slots which can be used/requested

concurrently.

user_lists User-sets which are allowed to use this pe. If NONE is set,

everybody is allowed to use this pe.

xuser_lists User-sets which are not allowed to use this pe. If NONE is set,

everybody is allowed to use this pe.

start_proc_args This command is started prior the execution of the parallel job

script.

stop_proc_args This command proceeds the execution of the parallel job

script finished.

per_pe_task_prolog This command is started prior the execution of any parallel

slave task.

per_pe_task_epilog This command is started after a parallel slave task finished.

allocation_rule The allocation rule is interpreted by the scheduler and helps

to determine the distribution of parallel processes among the

available execution hosts. There are three different rules

available:

- <int>: This defines the number of max processes allocated at

each host.

- $fill_up: All available slots on a host will be used (filled up). If

there are no more slots available on this particular host, the

remaining processes will be distributed to the next host.

- $round_robin: All processes of a parallel job will be

uniformly distributed of the Univa Grid Engine system.

control_slaves This options is in control when the parallel environment is

loose or tightly integrated.

job_is_first_task This parameter indicates if the job submitted already contains

one of the parallel tasks.

urgency_slots For pending jobs with a slot range pe request, the number of

slots is not determined. This setting specifies the method to

be used by Univa Grid Engine to assess the number of slots

such jobs might finally get. These methods are available:

Grid Engine Users’s Guide v 8.6.17 53

7 Other Job Types

Property Description

- <int>: This integer number is used as prospective number of

slots.

-min: The slot range minimum is used as prospective number

of slots.

-max: The slot range maximum is used as prospective

number of slots.

- avg: The average of all numbers occurring within the job’s pe

range request is assumed.

accounting_summary If set to TRUE, the accounting summary of all tasks are

combined in one single accounting record otherwise every

task is stored in an own accounting record. This option is only

considered if control_slaves is also set.

daemon_forks_slaves If this parameter is TRUE, a single daemon is started via qrsh
-inherit on every slave host which forks the slave tasks (value
TRUE, e.g. used for openmpi or lam integration). To use this

parameter control_slaves has to be TRUE.

master_forks_slaves This parameter can be set to TRUE if the master task

(e.g. mpirun called in the job script) starts tasks running on the

master host via fork/exec instead of starting them via qrsh
-inherit. To use this parameter control_slaves has to be
TRUE.

Table 21: Properties of the Parallel Environment (PE)

These properties will additionally be shown when using qconf -sp:

Property Description

used_slots The number of currently occupied slots of this parallel

environment. This is a read-only value and will only show with

qconf -sp!
bound_slots The number of currently occupied slots of this parallel

environment that got preempted, but are not yet available.

This is a read-only value and will only show with qconf -sp!

Table 22: Read-only properties of the Parallel Environment (PE)

Example/Template Parallel Environment

/SGE_ROOT/mpi/ MPI and MPICH

/SGE_ROOT/pvm/ PVM

Grid Engine Users’s Guide v 8.6.17 54

7 Other Job Types

Example/Template Parallel Environment

Table 23: Examples and Templates for MPI and PVM

See sge_pe(5) for detailed information.

7.3.2 Submitting Parallel Jobs

Parameter Description

-pe parallel_environment

n[-[m]][-]m

This parameter indicates that this is a parallel job.

Allowed Range Specifications for Job

n-mMinimum n slots and Maximum m slots

Example: 2-10

m

This is an abbreviation for m-m. Exactly m slots are

needed.

Example: 10

-m

This is an abbreviation for 1-m.

Example: -10

n-

At least n slots are needed but as much as possible slots

are wanted.

Example: 10-

-masterq queue With this parameter it is possible to define on which

queue the master task has run.

Table 24: Parameters to Submit a Parallel Job

Example:

qsub -pe mpi_pe 4-10 -masterq super.q mpi.sh

See submit(1) for more information.

Grid Engine Users’s Guide v 8.6.17 55

7 Other Job Types

7.3.3 Parallel Jobs and Core Binding

Note

Core Binding is not supported on Windows execution hosts.

Note

The behavior of the core-binding command for PE-jobs changed with Univa Grid Engine

version 8.6! The amount of cores to bind specified during submission changed from

meaning “per host” to mean “per PE-task”. For more information, see the section

PE-Jobs with core binding

Parallel jobs can exploit the core binding feature in different ways. The following sections

provides an overview of there different methods which can be used.

Using the -binding pe Request

One possibility of assigning CPU cores to a job is using the “pe” flag of the binding option

itself. The following example demonstrates requesting two cores per host, as well as two

slots per host, on all two hosts where the parallel job runs.

qsub -binding pe linear:2 -pe fixed2 4 ...

Note that the parallel environment fixed2 contains following fixed allocation rule:

allocation_rule 2

The allocation rule enforces the scheduler to select two slots per host, while the binding

request enforces the scheduler to select 2 free cores per host.

After dispatching the parallel job, the selected cores are marked as used in the scheduler.

This can be displayed using the qhost -F m_topology_inuse topology string. The selected

cores of a specific parallel job are displayed in the qstat -j <jobno> output in the binding

output.

binding 1: host_10=0,0:0,1, host_12=0,0:0,1

This means that on host_10 the job got core 0 and core 1 on the socket 0 and on host_12

the same core selection was done.

With using the -binding pe option the scheduler does its decision and marks those cores

as used but on the execution side no real core binding done (in contrast to the -binding

set (which equals just -binding) option. What Univa Grid Engine does is that it writes its

decision to the pe_hostfile in the last column. This file is usually exploited by tight parallel

jobs integration.

In the example it looks as follows:

host_10 2 all.q@macsuse 0,0:0,1
host_12 2 all.q@u1010 0,0:0,1

Grid Engine Users’s Guide v 8.6.17 56

7 Other Job Types

Using these <socket,core> pairs which are separated by a “:” sign the parallel job can exploit

the information and bind the parallel jobs on these cores. Note, that when having multiple

queue instances on a host and the parallel job spans over different queue instances on the

same host, that multiple entries for one host in the “pe_hostfile” exists. Since the binding

is a “per host” decision (as it is a per host request) all decisions for on particular host but

different queue instances on that host are the same. Since version 8.1. different decisions

for different hosts can be made. Hence a “pe_hostfile” can also look like below.

host_10 2 all.q@macsuse 1,2:1,2
host_12 2 all.q@u1010 0,0:0,1

One example how to exploit this information to bind the parallel tasks on different cores is us-

ing the “rankfile” of OpenMPI. With the rankfile it can be controlled how OpenMPI binds each

individual rank to a separate core. This can massively improve the performance of OpenMPI.

Like for other tight integrations such a rankfile must be created based on the “pe_hostfile” in-

formation. Univa Grid Engine contains an example in the $SGE_ROOT/mpi/openmpi_rankfile
product directory.

Using the SGE_BINDING Environment Variable

7.4 Jobs with Core Binding

Note

The output of qstat -j changed in 8.1 with respect to the final binding done per job

task. Before just one topology string was reported (for the master task), since 8.1 core

bindings on all hosts where the parallel job runs are showed as lists of , tuples.

Note

Since version 8.1 regardless of the binding mode (env, pe, or set) the SGE_BINDING

environment variable will always be available.

Note

Core Binding is not supported on Windows execution hosts.

Today’s execution hosts are usually multi-socket and multi-core systems with a hierarchy

of different caches and a complicated internal architecture. In many cases it is possible to

exploit the execution host’s topology in order to increase the user application performance

and therefore the overall cluster throughput. Another important use case is to isolate jobs

on the execution hosts from another in order to guarantee better run-time stability and

more fairness in case of over-allocation of the host with execution threads. The Univa

Grid Engine provides a complete subsystem, which not just provides information about the

execution host topology, it also allows the user to force the application to run on specific

CPU cores. Another use is so that the administrator can ensure via JSV scripts that serial

user jobs are using just one core, while parallel jobs with more granted slots can be run on

multiple CPU cores. In Univa Grid Engine core binding on Linux execution hosts is turned on

by default, while on Solaris hosts it must be enabled per execution host by the administrator

(see Enabling and Disabling Core Binding).

Grid Engine Users’s Guide v 8.6.17 57

7 Other Job Types

Note

Run the utilbin/<ARCH>/loadcheck -cb command in order to figure out the support of

core binding on the specific execution hosts.

In Univa Grid Engine version 8.1 the component, which is responsible for core selection

on execution hosts was moved from the execution host component into the scheduler

component. Hence it is possible now to guarantee a specific binding for a job because the

scheduler searches just for hosts which can fulfill the requested binding.

7.4.1 Showing Execution Host Topology Related Information

By default, the qhost output shows the number of sockets, cores and hardware supported

threads on Linux kernel versions 2.6.16 and higher and on Solaris execution hosts:

> qhost
HOSTNAME ARCH NCPU NSOC NCOR NTHR LOAD MEMTOT MEMUSE SWAPTO SWAPUS
--
global - - - - - - - - -
host1 lx-amd64 1 1 1 1 0.16 934.9M 150.5M 1004.0M 0.0
host2 lx-amd64 4 1 4 1 0.18 2.0G 390.8M 2.0G 0.0
host3 lx-amd64 1 1 1 1 0.06 492.7M 70.2M 398.0M 0.0

There are also several topology related host complexes defined after an Univa Grid Engine

standard installation:

> qconf -sc
...
m_core core INT <= YES NO 0 0
m_socket socket INT <= YES NO 0 0
m_thread thread INT <= YES NO 0 0
m_topology topo RESTRING == YES NO NONE 0
m_topology_inuse utopo RESTRING == YES NO NONE 0
m_topology_numa numa RESTRING == YES NO NONE 0
m_cache_l1 mcache1 MEMORY <= YES NO 0 0
m_cache_l2 mcache2 MEMORY <= YES NO 0 0
m_cache_l3 mcache3 MEMORY <= YES NO 0 0
m_numa_nodes nodes INT <= YES NO 0 0

The host specific values of the complexes can be shown in the following way:

> qstat -F m_topology,m_topology_inuse,m_socket,m_core,m_thread
queuename qtype resv/used/tot. load_avg arch states

all.q@host1 BIPC 0/0/10 0.00 lx26-amd64

hl:m_topology=SC
hl:m_topology_inuse=SC

Grid Engine Users’s Guide v 8.6.17 58

7 Other Job Types

hl:m_socket=1
hl:m_core=1
hl:m_thread=1

all.q@host2 BIPC 0/0/10 0.00 lx26-amd64

hl:m_topology=SCCCC
hl:m_topology_inuse=SCCCC
hl:m_socket=1
hl:m_core=4
hl:m_thread=4

all.q@host3 BIPC 0/0/10 0.00 lx26-amd64

hl:m_topology=SC
hl:m_topology_inuse=SC
hl:m_socket=1
hl:m_core=1
hl:m_thread=1

m_topology and m_topology_inuse are topology strings. They encode sockets (S), cores (C),
and hardware supported threads (T). Hence SCCCC denotes one socket host with a quad
core CPU and SCTTCTTSCTTCTT would encode a two socket system with a dual-core CPU on
each socket, which supports hyperthreading. The difference between the two strings is that

m_topology remains unchanged, even when core bound jobs are running on the host, while
m_topology_inuse displays the cores, which are currently occupied (with lowercase letters).
For example SccCC denotes a quad-core CPU, which has two jobs bound on the first and
second core, if each job requested only one core.

m_socket denotes the number of sockets on the host. m_core is the total number of cores,
the host offers. m_thread is the total number of hardware supported threads the host offers.
m_topology_numa is an enhanced topology string. In addition to the S, C, and T keywords
there are [and] characters which are marking a specific NUMA node on the execution
host. A NUMA (non-uniform memory access) node is a particular area for which the memory

latency is the same (usually it is per socket memory).

7.4.2 Requesting Execution Hosts Based on the Architecture

In order to request specific hosts for a job, all the complexes described in the sub-section

above can be used. Because and are regular expression strings (type RESTRING) special

symbols like * can be used as well. In the following example a quad core CPU is requested:

> qsub -b y -l m_topology=SCCCC sleep 60

This does not correspond to:

> qsub -b y -l m_core=4,m_socket=1 sleep 60

Because the latter request does also match to a hexacore or higher CPU because m_core is

defined as “<=”. In order to get a host with a free (currently unbound) quadcore CPU:

Grid Engine Users’s Guide v 8.6.17 59

7 Other Job Types

> qsub -b y -l m_topology_inuse=SCCCC sleep 60

In order to get a host with at least one quad core CPU, which is currently not used by a core

bound job:

> qsub -b y -l m_topology_inuse="*SCCCC*" sleep 60

7.4.3 Requesting Specific Cores

Note

Topology selections (socket/core selections) are not part of a resource reservation yet.

Hence jobs submitted with a specific binding and -R y might not be started even when

a reservation was done. This can be prevented when using the -binding linear request

and aligning the amount of slots per host to the amount of cores per host.

Univa Grid Engine supports multiple schemata in order to request cores on which the

job should be bound. Several adjoined cores can be specified with the linear:<amount>
request. In some cases it could be useful to distribute the job over sockets, this can be

achieved with the striding:<stepsize>:<amount> request. Here the stepsize denotes the
distance between two successive cores. The stepsize can be aligned with a m_topology
request in order to get the specific architecture. The most flexible request schema is
explicit:<socket,core>[:<socket,core>[...]]. Here the cores can be selected manually
based on the socket number and core number.

Examples:

Bind a job on two successive cores if possible:

> qsub -b y -binding linear:2 sleep 60

Request a two-socket dual-core host and bind the job on two cores, which are on different

sockets:

> qsub -b y -l m_topology=SCCSCC -binding striding:2:2 sleep 60

Request a quad socket hexacore execution host and bind the job on the first core on each

socket:

> qsub -b y -l m_topology=SCCCCCCSCCCCCCSCCCCCCSCCCCCC -binding
explicit:0,0:1,0:2,0:3,0 sleep 60

7.4.4 PE-Jobs with core binding

Note

The behavior of the core-binding command for PE-jobs changed with Univa Grid Engine

version 8.6! The amount of cores to bind specified during submission changed from

meaning “per host” to mean “per PE-task”.

Grid Engine Users’s Guide v 8.6.17 60

7 Other Job Types

For PE-jobs it is hard or even impossible to know in advance how many tasks are going

to be scheduled on how many hosts. Therefore, with Univa Grid Engine version 8.6, the

core-binding request changed its behavior to accommodate this fact. The binding-request

changed its meaning from being a “per host” request, to being a “per PE-task” request. This

means that the requested amount of cores means for a PE-job “per PE-task”.

For example, if a job with

> qsub -pe mype 5-7 -binding linear:2 -b y sleep 60

is submitted, it means that each PE-task will get 2 cores, no matter on which host or on how

many hosts the tasks are scheduled.

There are different binding-strategies, most of them exist in two versions: “host aware” and

“host unaware” strategies. For example, there are two versions of linear binding strategies:

linear and linear_per_task. Host unaware strategies have the suffix “_per_task”.

With “host aware” strategies, all tasks that end up on a host have to adhere to the given

strategy together. For “host unaware” strategies, each task has to adhere to the strategy on

its own. This is less strict and usually more tasks can fit on a host. For example, if a job with

> qsub -pe mype 2-4 -binding striding:2:2 -b y sleep 60

is submitted to a single host with the topology SCCCCCCCC, the resulting topology would be
ScCcCcCcC, with 2 tasks on that host. Here task 1 would get the binding ScCcCCCCC and task
2 SCCCCcCcC. Both tasks together have to adhere to the strategy striding with a step size of
2.

On the other hand, if the same job is submitted with the strategy striding_per_task,

> qsub -pe mype 2-4 -binding striding_per_task:2:2 -b y sleep 60

one would get 4 scheduled tasks and the topology Scccccccc, where task 1 would get
ScCcCCCCC, task 2 SCCCCcCcC, task 3 SCcCcCCCC and task 4 SCCCCCcCc. Each task has to
adhere to the strategy striding on its own, but now they can be interleaved.

With “host aware” strategies, PE-tasks “see each other”, when it comes to selecting cores,

whilst for “host unaware” strategies, PE-tasks do not “see each other”.

For more information, especially on the possible binding strategies and their behavior, see

man page submit(1).

7.5 NUMA Aware Jobs: Jobs with Memory Binding and Enhanced

Memory Management

Note

Only jobs running on lx-amd64 execution hosts are able to be set to use a specific

memory allocation strategy. The loadcheck -cb utility will show more information

about the capabilities of the execution host. May not work with older Linux kernels or

with missing libnuma system library.

Grid Engine Users’s Guide v 8.6.17 61

7 Other Job Types

Since today’s execution hosts are not only multi-core hosts but also having a NUMA archi-

tecture there is a need to align jobs with the particular memory allocation strategy. Univa

Grid Engine 8.6 allows you to do so by using the -mbind submission parameter alone or

in combination with the -binding parameter as well as with the following memory related

complexm_mem_free. Advantages can be more stable and under certain circumstances

result in faster job run-times and better job isolation. With Univa Grid Engine 8.6 following

complexes are additionally created during installation time:

Complex Name Description

m_topology_numa The NUMA topology string which displays the NUMA nodes of the

specific architecture.

m_mem_free Displays the amount of free memory available on the execution

host. Used for requesting NUMA memory globally on host as well as

implicitly on the different NUMA nodes, depending on the

schedulers decision (source /proc/meminfo and scheduler internal

accounting). From the /proc/meminfo file the sum of FreeMem,

Buffers, Cached, and SwapCached is taken into account as free

memory (since 8.1.4).

m_mem_used Displays the amount of used memory in the host.

m_mem_total Displays the amount of total memory on the host (source

/proc/meminfo).

m_mem_free_n0 -

m_mem_free_n3

Displays the amount of free memory the node (source

/sys/devices/system/node/node0/meminfo and scheduler internal

accounting). From the /node/meminfo file the sum of Inactive and

Free memory is taken into account as free memory (since 8.1.4).

m_mem_used_n0

-

m_mem_used_n3

Displays the amount of used memory on the node (total - free).

m_mem_total_n0 -

m_mem_total_n3

Displays the amount of total memory the node (source

/sys/devices/system/node/node0/meminfo).

m_cache_l1 Amount of level 1 cache on the execution host.

m_cache_l2 Amount of level 2 cache on the execution host.

m_cache_l3 Amount of level 3 cache on the execution host.

m_numa_nodes Amount of NUMA nodes on the execution host.

Table 25: NUMA related complexes

The -mbind parameter has following effect:

Grid Engine Users’s Guide v 8.6.17 62

7 Other Job Types

Parameter Description Dependencies

-mbind cores The job prefers memory on

local NUMA nodes (default),

but the job is also allowed

to use memory from other

NUMA nodes.

required: -binding optional: -l

m_mem_free=<mem_per_slot>

-mbind

cores:strict

The job is only allowed

allocate memory on the

local NUMA node.

see -mbind cores

-mbind

round_robin

The memory allocated by

the job is provided by the

OS in an interleaved

fashion.

optional: -l

m_mem_free=<mem_per_slot>

-mbind nlocal Sets implicitly core binding

as well as memory binding

strategy chosen by the

scheduler.

required: -l m_mem_free= not allowed:

-binding

Table 26: The -mbind submission parameter

There is a special memory consumable which can be used in conjunction with the -mbind

parameter: m_mem_free. This complex holds the total amount of free memory on all NUMA

nodes of the execution host. The value is derived from the actual load reported by the execu-

tion host as well as from the load calculated by the scheduler based on the memory requests.

The minimum of both values is the observed value ofm_mem_free. In case the execution

host has different NUMA nodes, the memory status of those is shown in them_mem_fee_n

complex values. Accordingly, there are complexes showing the total amount of memory

per node as well as the used memory per node. After installation them_mem_free con-

sumables are initialized on host level through setting the host complex_values field to the
specific values. They can be showed by the qconf -se <exechostname> command.

Note

Resource reservation with core binding or memory affinity when m_mem_free is used

is currently not fully supported. This means that for specific implicit memory requests

(memory per NUMA node/socket) no reservation is done.

If the job can’t run due to a non-valid binding ormissingmemory the job can get a reservation

on the (not on core or per socket memory resources), but only when the requested memory

is lower than the actual amount of memory (m_mem_free). In order to overcome this

issue the reporting of m_mem_free as load value can be turned off with execd_params

DISABLE_M_MEM_FREE=1 (qconf -mconf).

Depending on the -mbind request, the -binding request, them_mem_free request and the

amount of slots (parallel environment jobs) the scheduler seeks an appropriate execution

host, which can fulfill the requests and decrements the amount of memory automatically

for the chosen NUMA nodes.

Grid Engine Users’s Guide v 8.6.17 63

7 Other Job Types

7.5.1 Memory Allocation Strategy round_robin

This memory allocation strategy sets the memory policy of the jobs process into an inter-

leavedmode. This means that memory allocations are distributed over different memory

regions. If the job is scheduled to hosts which don’t support this, the OS default memory

allocation is done.

When memory allocation strategy round_robin was requested together with the special

resourcem_mem_free then the requested amount of memory is decremented from the

m_mem_free variable. Additionally the per socket memory (m_mem_free_nN) is decre-

mented equally from all sockets of the selected execution host.

When it is not possible to distribute the amount of free memory equally (because one or

more of the NUMA nodes don’t offer that amount of memory), then the host is skipped.

For parallel jobs, when requested m_mem_free together with -mbind round_robin, the
amount ofm_mem_free actually decremented on a particular host depends on the amount

of granted slots on this host and at the same time it limits (the socket with the least amount

of free memory) the amount of slots which can be granted, when needed. For example:

When 4 slots are granted on a particular host, the amount ofm_mem_free is multiplied by

4. Hence each socket has to offer (m_mem_free * 4) / <amount_of_NUMA_sockets> bytes

free on each socket.

Examples:

qsub -mbind round_robin -binding striding:2:4 mem_consuming_job.sh

This results in a job which runs on a 2 quad core socket machine with memory affinity set

to interleaved (to all memory banks on the host) for best possible memory throughput for

certain job types.

qsub -mbind round_robin mem_consuming_job.sh

This results in a job which runs unbound and takes memory in an interleaved fashion.

qsub -mbind round_robin -binding linear:2 -pe mytestpe 4 -l m_mem_free=2G -b y
sleep 13

Let’s assume here that mytestpe has an allocation rule of pe_slots. Then the job is run-

ning on a host which offers 4*2GB=8GB of m_mem_free as well as on each NUMA node

(m_mem_free_nX) at least 8GB/ free memory. The memory consumable m_mem_free is

decrement by 8GB and all consumables representing a NUMA node (m_mem_free_n0 to

m_mem_free_nX) are decremented by 8GB/ memory. The same behaviour can be seen

when “-binding” strategy is changed to any of the available ones, or even when “-binding” is

not selected.

Grid Engine Users’s Guide v 8.6.17 64

7 Other Job Types

7.5.2 Memory Allocation Strategy cores and cores:strict

This memory allocation strategy takes memory from all NUMA nodes where the job is

bound to (with core binding) into account. If no core binding (-binding) was requested the

job is rejected during submission time. Depending on the parameter the memory request

is either restricted to local NUMA nodes (cores:strict) only or local memory is preferred

(cores).

If the memory request, which comes with the job submission command, can not be fulfilled

(because NUMA node N offers not as much memory) the node is skipped by the scheduler.

On 64bit Linux internally the system callmbind (see man mbind) is executed.

The requested memory (when using -l m_mem_free) is decremented fromm_mem_free as

well as from the NUMA nodes (m_mem_free_nN) where the job is bound to. When a job

gets for example 2 cores on socket 1 and one core on socket 2 then the amount of memory

onm_mem_free_n1 is decremented by the total amount of requested memory divided by

the amount of granted cores (here 3) multiplied by the amount of granted cores on the

particular NUMA node (here 2). The consumablem_mem_free_n2 is charged by half of this

amount of memory.

Strict means: Only local memory on NUMA node allowed.

Without any keyword the memory allocation strategy is set on Linux to the “preferred”

mode, that means the job gets memory from the near node as long as there is free memory.

When there is no more free memory it is allowed to use memory from a greater distance.

Examples:

qsub -mbind cores -binding linear:1 /bin/sleep 77

The job gets bound to a free core. The memory requests are preferred on the same NUMA

node. If there is no more memory free the next memory request is taken from a node with

an higher distance to the selected core.

qsub -mbind cores -binding linear:1 -l m_mem_free=2G /bin/sleep 77

The job gets bound to a free core only on a NUMA node which currently offers 2GB. The

memory requests are preferred on the same NUMA node. If there is no more memory free

the next memory request is taken from a node with an higher distance to the selected core.

The requested memory is debited from nX_mem_free consumable (memory job-request /

amount of occupied cores on node).

Warning

This could cause out of memory errors on strict jobs in case of overflows. Hence

mixing strict with preferred jobs is not recommended.

qsub -mbind cores:strict -binding linear:1 /bin/sleep 77

The job gets bound to a free core. The memory is always taken from the local NUMA node.

If there is no more memory free on the NUMA node the program gets by the next program

break extension (brk()) an out of memory exception.

Grid Engine Users’s Guide v 8.6.17 65

7 Other Job Types

qsub -mbind cores:strict -binding striding:2:4 -pe mytestepe 2 -l m_mem_free=2G
/bin/sleep 77

Complete parallel job requests 2G * 2 slots = 4GB memory and 2 cores on two sockets (quad

core processors). Assumption: Each core needs 2 GB. The job gets scheduled to a particular

host if both NUMA nodes (here both sockets) offer each 2GB m_mem_free_nX. If not the

host is skipped. The particular consumables are decremented by that amount.

qsub -mbind cores /bin/sleep 77

The job gets rejected because the binding is missing.

7.5.3 Memory Allocation Strategy nlocal

This memory allocation strategy automatically allocates cores and set an appropriate mem-

ory allocation strategy for single-threaded or multi-threaded (parallel environments with

allocation_rule pe_slots) depending on the memory request and the execution hosts charac-

teristics (free sockets/cores and free memory on the specific NUMA nodes).

Note

Requirements: No core binding request set (otherwise the job is rejected), but a

mandatory request for the m_mem_free consumable. If this consumable is not

requested the job is rejected.

-mbind nlocal with Sequential Jobs

The nlocal strategy is intended to use for sequential as well for multi-threaded jobs in order

to get stable job run-time results as well highest amount of memory throughput. The only

requirement for the jobs is the amount of memory the job needs per slot (-l m_mem_free=).

Whenmultiple slots are needed then a parallel environment with the allocation rule “pe_slots”

(so that the job is not distributed to different hosts) is required. The behavior is undefined

with PEs having other allocation rules configured. The scheduler tries to place jobs on

sockets which offers most free cores and have additionally the required amount of memory

free on the specific NUMA node (m_mem_free_n<node>). If the required amount of memory

is more than each socket has installed the job will run on one socket exclusively if one is

completely free (with out any core-bound jobs). If the required memory is more than free

memory each NUMA node (socket) can offer, but less than installed memory on the NUMA

nodes, the host is skipped. In this scenario the job has either to wait until the required

amount of memory is free on this host or it can run an a more appropriate host.

On NUMA execution nodes the scheduler tries to do following for sequential jobs:

• If the host can’t fulfill them_mem_free request then the host is skipped.

• If the job requests more ram than free on each socket but less than installed on the

sockets the host is skipped.

• If memory request is smaller than amount of free memory on a socket, try to bind the

job to one core on the socket and decrement the amount of memory on this socket

(m_mem_free_n<nodenumber>). The global host memory m_mem_free on this host is

decremented as well.

Grid Engine Users’s Guide v 8.6.17 66

7 Other Job Types

• If memory request is greater than the amount of free memory on any socket, find an

unbound socket and bind it there completely and allow memory overflow. Decrement

from m_mem_free as well as from m_mem_free_n and the remaining memory round

robin from the remaining sockets.

• If both are not possible go to the next host.

-mbind nlocal with Parallel Jobs

Parallel jobs are handled in the scheduler the following way (only pe_slots PEs are supported,

the behaviour for other allocation rules is unspecified):

• Hosts that do not offer m_mem_free memory are skipped (of course hosts that do not

offer the amount of free slots requested are skipped as well).

• If the amount of requested slots is greater than the amount of cores per socket. The

job is dispatched to the host without any binding.

• If the amount of requested slots is smaller than the amount of cores per socket do

following:

– If there is any socket which offers enough memory (m_mem_free_n) and enough

free cores bind the job to these cores and set memory allocation mode to

cores:strict (so that only local memory requests can be done by the job).

– If this is not possible try to find a socket which is completely unbound and

has more than the required amount of memory installed (m_mem_total_n).

Bind the job to the complete socket, decrement the memory on that socket at

m_mem_free_n (as well as host globally on m_mem_free), and set the memory

allocation strategy to cores (preferred usage of socket local memory).

If nothing matches then the host is skipped.

Other examples

The following example demonstrated how a parallel job with 4 threads (requesting the

parallel environment testpe for 4 slots (allocation_rule $pe_slots) each needed 1 gigabyte of

memory is submitted (4 gigabytes for the job in total):

qsub -mbind cores:strict -binding linear:4 -pe testpe 4 -l m_mem_free=1G testjob.sh

For this job the scheduler skips all hosts which do not have 4 slots, 4 cores as well as 4

gigabyte free (according to the m_mem_free value). If a host is found it is first tried to

accommodate the job on one single socket, if it is not possible then a distribution over the

least amount of sockets is tried. If the host does not fulfill the memory request on the

chosen socket / NUMA node (m_mem_free_n<node>) the host is discarded. Otherwise the

job gets assigned the specific cores as well as the particular amount of memory on the

machine as well on the NUMA nodes. Hence a -l m_mem_free request comes with implicit

m_mem_free_n requests depending of the binding the scheduler determines.

Grid Engine Users’s Guide v 8.6.17 67

7 Other Job Types

7.6 Checkpointing Jobs

Note

Checkpointing is not supported on Windows execution hosts.

Checkpointing delivers the possibility to save the complete state of a job and to restart from

this point of time if the job was halted or interrupted. Univa Grid Engine supports two kinds

of Checkpointing jobs: the user-level and the kernel-level Checkpointing.

7.6.1 User-Level Checkpointing

User-Level Checkpointing jobs have to do their own checkpointing by writing restart files at

certain times or algorithmic steps. Applications without an integrated user-level checkpoint-

ing can use a checkpointing library like the Condor project.

7.6.2 Kernel-Level Checkpointing

Kernel-Level Checkpointing must be provided by the executing operating systems. The

checkpointing job itself does not need to do any checkpointing. This is done by the OS

entirely.

7.6.3 Checkpointing Environments

To execute and run checkpointing jobs environments, similar to parallel jobs, are necessary

to control how, when and how often checkpointing should be done.

Parameter Description

-ackpt add a checkpointing environment

-dckpt delete the given checkpointing environment

-mckpt modify the given checkpointing environment

-sckpt show the given checkpointing environment

Table 27: Handle Checkpointing Environments with qconf

A checkpointing environment is made up of the following parameters:

Parameter Description

ckpt_name The name of the checkpointing environment.

hibernator

The Hibernator kernel-level checkpointing is interfaced.

Grid Engine Users’s Guide v 8.6.17 68

7 Other Job Types

Parameter Description

cpr

The SGI kernel-level checkpointing is used.

cray-ckpt

The Cray kernel-level checkpointing is used.

transparent

Univa Grid Engine assumes that the job submitted within

this environment uses a checkpointing library such as the

mentioned Condor.

userdefined

Univa Grid Engine assumes that the job submitted within

this environment uses a its private checkpointing method.

application-level

Uses all interface commands configured in the

checkpointing object. In case of one of the kernel level

checkpointing interfaces the restart_command is not used.

Table 28: Handle Checkpointing Environments Parameters

7.6.4 Submitting a Checkpointing Job

qsub -ckpt <ckpt_env> -c <when_options> job

The -c option is not mandatory. It can be used to override the when parameters stated in

the checkpointing environment.

Example of a Checkpointing Script

The environment variable RESTARTED is set for checkpointing jobs that are restarted. This

variable can be used to skip e.g. preparation steps.

#!/bin/sh
#$ -S /bin/sh

Check if job was restarted/migrated
if [$RESTARTED = 0]; then

Job is started first time. Not restarted.
prepare_ckpt_env
start_job

else
Job was restarted.

restart_job
fi

Grid Engine Users’s Guide v 8.6.17 69

7 Other Job Types

7.7 Immediate Jobs

Univa Grid Engine tries to start such jobs immediately or not at all. If, in case of array jobs,

not all tasks can be scheduled immediately, none will be started. To indicate an immediate

job, the -now option has to be declared with the parameter yes.

Example:

qsub -now yes immediate_job.sh

The -now option is available for qsub, qsh, qlogin and qrsh. In case of qsub no is the default

value for the -now option, in case of qsh, qlogin and qrsh vice versa.

7.8 Reservations

With the concept of Advance Reservations (AR) it is possible to reserve specific resources for

a job, an user or a group in the cluster for future use. If the AR is possible (resources are

available) and granted it is assigned an ID.

With Standing Reservations the allocation of recurring Advance Reservations can be sched-

uled. Standing Reservations are defined through a weekly calendar which determines when

Advance Reservations start and when they end. The Advance Reservations within a Standing

Reservation behave like normal Advance Reservations with the difference that all Advance

Reservations have the same AR ID and that waiting jobs requesting that AR ID are not

deleted when one Advance Reservation ends. They are only deleted at the end of the last

occurrence of an Advance Reservation.

7.8.1 Advance Reservations

Configuring Advance Reservations To be able to create advance reservations the user

has to be member of the arusers list. This list is created during the Univa Grid Engine

installation. Use qconf to a user to the arusers list.

qconf -au username arusers

Creating Advance Reservations qrsub is the command used to create advance reserva-
tions and to submit them to the Univa Grid Engine system.

qrsub -a <start_time> -e <end_time>

The start and end times are in [[CC]YY]MMDDhhmm[.SS] format. If no start time is given,

Univa Grid Engine assumes the current time as the start time. It is also possible to set a

duration instead of an end time.

qrsub -a <start_time> -d <duration>

Grid Engine Users’s Guide v 8.6.17 70

7 Other Job Types

The duration is in hhmm[.SS] format. Examples: The following example reserves an slot in

the queue all.q in host host1 starting at 04-27 23:59 for 1 hour.

qrsub -q all.q -l h=host2 -a 04272359 -d 1:0:0

Many of the options available for qrsub are the same as for qsub.

Monitoring Advance Reservations qrstat is the command to list and show all advance
reservations known by the Univa Grid Engine system. To list all configured advance reserva-

tions type:

qrstat

To list a special advance reservation type:

qrstat <ar_id>

Every submitted AR has an own ID and a special state.

State Description

w Waiting - Granted but start time not yet reached

r Running - Start time reached

d Deleted - Deleted manually

W Warning - AR became invalid but start time is not yet reached

E Error - AR became invalid and start time is reached

Table 29: Possible Advance Reservation States

Examples:

qrstat
ar-id name owner state start at end at duration

1 user1 w 04/27/2011 23:59:00 04/28/2011 00:59:00 01:00:00

qrstat -ar 1
id 1
name
owner user1
state w
start_time 04/27/2011 23:59:00
end_time 04/28/2011 00:59:00

Grid Engine Users’s Guide v 8.6.17 71

7 Other Job Types

duration 01:00:00
submission_time 04/27/2011 15:00:11
group users
account sge
resource_list hostname=host1
granted_slots_list all.q@host1=1

Modifying Advance Reservations qralter is the command used to modify already exist-
ing advance reservations.

Example:

qrsub -a 201810101200 -e 201810101600
Your advance reservation 123 has been granted
qralter -e 201810101800 123
modified advance reservation 123

All attributes of an advance reservation which can be specified at AR submission time can

also be modified, provided that the resource consumption in the cluster allows for the

change.

All attributes can be changed for ARs being still pending or being running but without jobs

running in the AR. It might become necessary to reschedule the AR, e.g. if resource requests

(-l / -masterl) or queue requests (-q / -masterq) are modified. If rescheduling is not possible

as the requested resources are not available in the given time frame then qralter will print

an error message and the AR will not be modified.

If an AR is already running and has running jobs

• Simple modifications not affecting the reserved resources like modifying the name (-N)

or the account string (-A) will always work.

• Modifying start time (-a), end time (-e) or duration (-d) will work, if the resources held

by the AR will also be available in the new time frame. Reducing the time frame will

always be accepted.

• If rescheduling of the AR would be necessary as e.g. resource requests shall bemodified

(-l / -masterl) or the given set of resources will not be available in an extended time

frame (-e / -d) qralter will print an error message and the AR will not be modified.

Deleting Advance Reservations qrdel is the command to delete an advance reservation.
The command requires at least the ID or the name of the AR.

Example:

qrdel 1

A job which refers to an advance reservation which is in deletion will also be removed. The

AR will not be removed until all referring jobs are finished!

Grid Engine Users’s Guide v 8.6.17 72

7 Other Job Types

Using Advance Reservations Advance Reservations can be used via the -ar parameter

which is available for qsub, qalter, qrsh, qsh and qlogin.

Example:

qsub -ar 1 reservation_job.sh

7.8.2 Standing Reservations

Standing Reservations can only be created by users which are in the arusers list.

In order to create a Standing Reservation a calendar needs to be specified. The calendar

determines the start and end times of the Advance Reservations which are dynamically

created by the Standing Reservation.

Standing Reservations are per default endless unless an end time is specified either by the

duration or by the end time switch.

The first allocated Advance Reservation is the next matching start date of the calendar

unless a later start time is specified.

The scheduler allocates per default the next 8 Advance Reservation instances during sub-

mission time. Whenever an Advance Reservation ends it allocates one more Advance

Reservation to keep the instance count constant. The amount of allocated Advance Reserva-

tions at a time is called depth and is a qrsub parameter (-cal_depth). The administrator can
limit the maximum depth with the MAX_AR_CAL_DEPTH qmaster parameter. Per default it is

limited to 8.

In case an Advance Reservation instance cannot be allocated as the required resources

are not available at the given time interval it will go into Error (E) state and jobs will not be

dispatched into this AR.

If the first Advance Reservation instance cannot be allocated submission of the Standing

Reservation will be rejected. The user can override this behaviour with the -cal_jmp param-
eter. The -cal_jmp parameter specifies how many non allocatable Advance Reservation
instances may be skipped at Standing Reservation submission time without the submission

being rejected.

The administrator can limit the amount of non-allocated reservations with the

MAX_AR_CAL_JMP parameter. Per default it is limited to 0.

Creating Standing Reservations Standing Reservations can be created with the qrsub
command using a calendar specification. The calendar specification is the -cal_week parame-
ter which accepts a Univa Grid Engine weekly calendar specification (see man calendar_conf).
The weekly calendar is only allowed to set the state on.

$ qrsub -cal_week "mon-fri=08:30-11:30=on" -q all.q -pe mytestpe 10
Your advance reservation 4000000000 has been granted

This command creates Advance Reservations for each day from Monday till Friday from 8:30

till 11:30 in the queue all.q for one slot. As with Advance Reservations, if multiple slots are
required, a parallel environment with a certain amount of slots needs to be requested.

Grid Engine Users’s Guide v 8.6.17 73

7 Other Job Types

The above command tries to create the default amount of Advance Reservations starting

from the next possible day. If an Advance Reservation ends a new one is allocated automati-

cally after the last one in the schedule. In order to limit the amount of allocated Advance

Reservations at one point in time the -cal_depth parameter has to be used. Following
command allocates just one Advance Reservation when that one finishes a new one for the

next possible date is created.

$ qrsub -cal_week "mon-fri=08:30-11:30=on" -cal_depth 1 —q all.q -pe mytestpe 10
Your advance reservation 4000000001 has been granted

It is possible that some of the Advance Reservations can not be allocated in the schedule

since resources are already in use. If this happens no further Advance Reservations are

scheduled. In order to explicitly allow that unallocated times can be skipped the -cal_jmp
parameter can be used. This parameter determines how many time ranges are allowed to

be skipped without an Advance Reservation if there are no resources available. Per default

it is 0.

In the following example there is only 1 slot configured in the all.q with one host.

Now 3 Advance Reservations are scheduled with an unlimited calendar.

$ qrsub -cal_week "mon-fri=08:30-11:30=on" -cal_depth 3 -q all.q
Your advance reservation 4000000002 has been granted

In order to inspect the Standing Reservation the qrstat command line tool can be used.

$ qrstat -ar 4000000002

id 4000000002
name
owner daniel
standing_reservation true
sr_cal_week mon-fri=08:30-11:30=on
start_time NONE
end_time NONE
duration NONE
sr_state_0 w
sr_start_time_0 03/31/2016 08:30:00.000
sr_end_time_0 03/31/2016 11:30:00.000
sr_duration_0 03:00:00.000
sr_allocated_0 true
sr_granted_pe_0
sr_granted_slots_list_0 all.q@mint14=1
sr_state_1 w
sr_start_time_1 04/01/2016 08:30:00.000
sr_end_time_1 04/01/2016 11:30:00.000
sr_duration_1 03:00:00.000
sr_allocated_1 true
sr_granted_pe_1

Grid Engine Users’s Guide v 8.6.17 74

7 Other Job Types

sr_granted_slots_list_1 all.q@mint14=1
sr_state_2 w
sr_start_time_2 04/04/2016 08:30:00.000
sr_end_time_2 04/04/2016 11:30:00.000
sr_duration_2 03:00:00.000
sr_allocated_2 true
sr_granted_pe_2
sr_granted_slots_list_2 all.q@mint14=1
project
submission_time 03/30/2016 11:34:34.815
group daniel2
account sge
free_resources false

The next Standing Reservation is requested with the same calendar. Hence the slots can not

be granted.

$ qrsub -cal_week "mon-fri=08:30-11:30=on" -cal_depth 3 -q all.q
Could not find time slots for Standing Reservation

But the Standing Reservation request can be allowed to skip (jump) over reservation times

when there are not enough slots.

$ qrsub -cal_week "mon-fri=08:30-11:30=on" -cal_depth 1 -cal_jmp 4 -q all.q
Your advance reservation 4000000003 has been granted

When inspecting the Standing Reservation it can be noticed that one Advance Reservation

was allocated (sr_allocated true) due to a depth of 1 and 3 times of the calendar scheduler

are skipped over.

$ qrstat -ar 4000000003

id 4000000003
name
owner daniel
standing_reservation true
sr_cal_week mon-fri=08:30-11:30=on
start_time NONE
end_time NONE
duration NONE
sr_state_0 E
sr_start_time_0 03/31/2016 08:30:00.000
sr_end_time_0 03/31/2016 11:30:00.000
sr_duration_0 03:00:00.000
sr_allocated_0 false
sr_granted_pe_0
sr_granted_slots_list_0 all.q@mint14=1
sr_state_1 E

Grid Engine Users’s Guide v 8.6.17 75

7 Other Job Types

sr_start_time_1 04/01/2016 08:30:00.000
sr_end_time_1 04/01/2016 11:30:00.000
sr_duration_1 03:00:00.000
sr_allocated_1 false
sr_granted_pe_1
sr_granted_slots_list_1 all.q@mint14=1
sr_state_2 E
sr_start_time_2 04/04/2016 08:30:00.000
sr_end_time_2 04/04/2016 11:30:00.000
sr_duration_2 03:00:00.000
sr_allocated_2 false
sr_granted_pe_2
sr_granted_slots_list_2 all.q@mint14=1
sr_state_3 w
sr_start_time_3 04/05/2016 08:30:00.000
sr_end_time_3 04/05/2016 11:30:00.000
sr_duration_3 03:00:00.000
sr_allocated_3 true
sr_granted_pe_3
sr_granted_slots_list_3 all.q@mint14=1
project
submission_time 03/30/2016 11:34:51.778
group daniel2
account sge
free_resources false

Creating a Time Restricted Standing Reservation In all previous examples there is no

start date for the first nor an end date for the last Advance Reservation. By using the -a,
-d, and -e switches of qrsub together with a calendar request, the Advance Reservations
scheduled within Standing Reservations can be limited.

The -a switch denotes the start time of the Standing Reservation. It is the earliest time the
first AR within the Standing Reservation can be scheduled. Unlike for Advance Reservations

it is valid to specify a start time without an end time or duration. If an end time is specified

with -e then the last scheduled AR must end before the given time. Like the -a switch also
the -e switch can requested as a single request.

The duration switch -d can be requested either with a start time (-a) which then specifies
the end time or without any other request which then specifies the end time as the current

time plus the duration. The next example demonstrates how a Standing Reservation with

ARs scheduled only in the first week of April 2016 can be requested. Note that -a, -e are
date_time requests ([[CC]YY]MMDDhhmm[.SS]) while the -d parameter is a time request
(hours:minutes:seconds or seconds).

$ qrsub -cal_week "mon-fri=08:30-11:30=on" -a 1604010000 -e 1604080000 -q all.q
Your advance reservation 4000000005 has been granted

$ qrstat -ar 4000000005

Grid Engine Users’s Guide v 8.6.17 76

7 Other Job Types

id 4000000005
name
owner daniel
standing_reservation true
sr_cal_week mon-fri=08:30-11:30=on
start_time 04/01/2016 00:00:00.000
end_time 04/08/2016 00:00:00.000
duration 168:00:00.000
sr_state_0 w
sr_start_time_0 04/01/2016 08:30:00.000
sr_end_time_0 04/01/2016 11:30:00.000
sr_duration_0 03:00:00.000
sr_allocated_0 true
sr_granted_pe_0
sr_granted_slots_list_0 all.q@mint14=1
sr_state_1 w
sr_start_time_1 04/04/2016 08:30:00.000
sr_end_time_1 04/04/2016 11:30:00.000
sr_duration_1 03:00:00.000
sr_allocated_1 true
sr_granted_pe_1
sr_granted_slots_list_1 all.q@mint14=1
sr_state_2 w
sr_start_time_2 04/05/2016 08:30:00.000
sr_end_time_2 04/05/2016 11:30:00.000
sr_duration_2 03:00:00.000
sr_allocated_2 true
sr_granted_pe_2
sr_granted_slots_list_2 all.q@mint14=1
sr_state_3 w
sr_start_time_3 04/06/2016 08:30:00.000
sr_end_time_3 04/06/2016 11:30:00.000
sr_duration_3 03:00:00.000
sr_allocated_3 true
sr_granted_pe_3
sr_granted_slots_list_3 all.q@mint14=1
sr_state_4 w
sr_start_time_4 04/07/2016 08:30:00.000
sr_end_time_4 04/07/2016 11:30:00.000
sr_duration_4 03:00:00.000
sr_allocated_4 true
sr_granted_pe_4
sr_granted_slots_list_4 all.q@mint14=1
project
submission_time 03/30/2016 13:12:19.970
group daniel2
account sge
free_resources false

Grid Engine Users’s Guide v 8.6.17 77

7 Other Job Types

Submitting Jobs into Standing Reservations After a Standing Reservation was granted

the given ID can be used like a Advance Reservation ID, i.e. the qsub -ar <ID> parameter
needs to be used to submit jobs into the Advance Reservations given by Standing Reser-

vation. When one Advance Reservation ends jobs running in the Advance Reservation are

deleted. Jobs which are still queued remain waiting for the next occurrence of an Advance

Reservation instance of the Standing Reservation. By using the job start time parameter

-a jobs can be further directed not to start in any Advance Reservation of the Standing
Reservation before that time. When a Standing Reservation ends (when having an end time

specified or no further Advance Reservations can be allocated within the given constraints)

all jobs, also waiting jobs are deleted.

The following example shows how to request a Standing Reservation.

$ qsub -ar 4000000000 myjob.sh

Monitoring Standing Reservations In order to display the individual Advance Reser-

vation instances of a Standing Reservation the qrstat command line utility can be used.

Standard Advance Reservations and Standing Reservations are differentiated by the stand-

ing_reservation entry (for qrstat -ar) or the sr (Standing Reservation) column (for qrstat).

In the qrstat overview the state refers to the state of the next AR within the Standing

Reservation. The start at, end at, as well as duration column refer to the start, end, and

duration of the whole Standing Reservation. If the Standing Reservation is not limited NONE

is shown.

Following an example in which the first 3 entries are Standing Reservation and the last entry

is an Advance Reservation.

$ qrstat
ar-id name owner state start at end at duration sr

4000000013 daniel w NONE NONE NONE true
4000000015 daniel r NONE NONE NONE true
4000000017 daniel w 03/30/2016 13:52:32 04/01/2016 13:52:32 48:00:00 true
4000000019 daniel w 10/10/2018 00:00:00 10/15/2018 08:00:00 128:00:00 false

Detailed information about the scheduled instances of the Advance Reservations within a

Standing Reservation can be requested with the qrstat -ar switch. Following entries can
be seen:

Entry Specification

sr_cal_week Shows the cal_week submission request.

sr_state_0 Shows the state of the first instance within the Standing

Reservation.

sr_start_time_0 Shows the start time of the first instance within the Standing

Reservation.

sr_end_time_0 Shows the end time of the first instance within the Standing

Reservation.

Grid Engine Users’s Guide v 8.6.17 78

7 Other Job Types

Entry Specification

sr_duration_0 Shows the duration of the first instance within the Standing

Reservation.

sr_allocated_0 Shows if the first instance could reserve the required

resources or not. If that is set to false then the -cal_jmp
parameter must be set to > 0. Note that in unallocated

instance no jobs can run since no resources are free. The

allocation is only tried once, for the first (amount given by the

-cal_depth parameter) ARs during qrsub time and for later
ARs whenever one AR within the Standing Reservation ends.

sr_granted_pe_0 Optionally shows the parallel environment the first instance

within the Standing Reservation got granted.

sr_granted_slots_list_0 Shows the queue instances and the number of slots per
queue instance the first instance within the Standing

Reservation got granted.

Table 30: TABLE: Standing Reservation details

For each scheduled Advance Reservation within the Standing Reservation a similar block of

entries is shown with the corresponding AR instance number.

The following example shows the details of a Standing Reservation with 2 allocations (depth)

which continues to allocated more ARs until it is explicitly deleted (qrdel) or no resources
can be found for further scheduling more AR instances.

$ qrstat -ar 4000000003
--
id 4000000003
name
owner daniel
standing_reservation true
sr_cal_week 8:30-11:30=on
start_time NONE
end_time NONE
duration NONE
sr_state_0 w
sr_start_time_0 04/09/2016 08:30:00.000
sr_end_time_0 04/09/2016 11:30:00.000
sr_duration_0 03:00:00.000
sr_allocated_0 true
sr_granted_pe_0
sr_granted_slots_list_0 access@u1010=1
sr_state_1 w
sr_start_time_1 04/10/2016 08:30:00.000
sr_end_time_1 04/10/2016 11:30:00.000
sr_duration_1 03:00:00.000

Grid Engine Users’s Guide v 8.6.17 79

7 Other Job Types

sr_allocated_1 true
sr_granted_pe_1
sr_granted_slots_list_1 access@u1010=1
project
submission_time 04/08/2016 11:25:43.137
group daniel2
account sge
free_resources false
reserve_available_only false

7.9 Jobs using Docker Containers

Docker containers allow to run applications with specific demands for their software envi-

ronment without the need to keep separate hosts just to provide that specific environment.

Docker containers are - from the users point of view - similar to virtual machines, but are

much lighter and simpler and are easier to maintain.

Univa Grid Engine provides an integration with Docker which allows to start tasks of jobs

inside Docker containers. Currently, this integration is supported only on newer Linux

versions. If Docker is installed on an execution host, this reports both the availability of

Docker on this host and the list of available Docker images. The availability of Docker is

reported by the docker complex of type BOOL; if Docker is available, the value is true. The
list of locally available Docker images on this host is reported as a comma separated list in

the complex docker_images, which is of type RESTRING. The comma separated list has the
format REPOSITORY:TAG[,REPOSITORY:TAG,...], where the REPOSITORY and TAG define the
Docker image like in the output of the docker images command. Because all images are
reported as one string, the request for an image must select one part of this string, which is

done by using wildcards, see the examples below.

7.9.1 Running a sequential job in a Docker container

There are two ways to start a sequential job in a Docker container:

1) Specify the job or job script to start on the job submit command line

2) Let Docker start whatever is defined as the ENTRYPOINT of the container

For both ways, to submit a job to a Docker container both the docker and the docker_images
complex must be requested, like in this job submit of the first kind:

$ qsub -l docker,docker_images="*centos:latest*" my_job.sh

This job will be started

a) on a host with a running and properly answering Docker daemon of at least version 1.8.3

(see the AdminGuide or the Release Notes for the latest supported Docker version)

b) where a Docker image is available that matches "*centos:latest*"

Because this is not a binary job, the job script gets transferred from the submit host to the
execution host by Univa Grid Engine. There, the script is copied to the job spool directory of

the execution daemon. In order to allow this script to be started inside of the container, the

spool directory must be made available inside the container (which is called “binding” in the

Docker terminology). Also, the $SGE_ROOT must always be available inside the container to

allow Univa Grid Engine to work properly. Furthermore, Univa Grid Engine automatically

Grid Engine Users’s Guide v 8.6.17 80

7 Other Job Types

detects other directories that have to be available inside the container in order to allow the

job to run.

Sharing and binding these directories is done automatically by Univa Grid Engine. These

directories are always bound to a subdirectory of /uge_mnt inside the container, and they
are bound by sharing each the top level directory to a direct subdirectory of the ‘/uge_mnt’

bind point with the same name. I.e.:

• If $SGE_ROOT is e.g. /opt/uge, then the top directory /opt is bound to /uge_mnt/opt
inside the container.

• If the execution daemon spool directory is e.g. /var/spool/uge, then the top directory
/var is bound to /uge_mnt/var inside the container.

The top level directory and not the specific directory itself is bound because Docker was not

able to bind a directory to a bound directory in older versions, which would be the case if

both /opt:/uge_mnt/opt and /opt/uge:/uge_mnt/opt/uge would be bound automatically -
then the uge subdirectory would be bound to the already bound /uge_mnt/opt directory,
which wasn’t allowed. This behaviour could be changed in future versions of UGE.

There are other directories that are bound automatically inside the container, e.g. the job

users home directory to allow the output and error file of the job to written to their default

location. If the paths specified with the -o and -e switch point to different directories,
these are bound into the container instead. This automatic directory binding applies to all

directories that are defined explicitly or implicitly by specifying or omitting Univa Grid Engine

switches.

Univa Grid Engine cannot detect which paths the job itself uses, even if they are specified

as arguments to the job script. For this, paths must be bound manually, using the -xd -v
switch, which takes the argument HOST-DIR:CONTAINER-DIR (see the submit(1) man page for
details).

Docker disallows to bind two different directories to the same bind point inside the container.

Among all the automatic and manual directory binds, Univa Grid Engine ensures a directory

is not bound two times to the same top directory inside of the container. The user does not

have to take care of this.

Paths that are automatically bound by Univa Grid Engine are also automatically mapped,

i.e. the Univa Grid Engine components running inside the container use the bound paths

instead of the original ones. But a path in an argument to the job cannot be mapped

automatically, this must be done by the job submitter or the job script. E.g. if a job is

submitted using this command line:

$ qsub -l docker,docker_images="*centos:latest*" -xd "-v /scratch:/container_scratch"
my_job.sh /scratch/data

it will not work if the my_job.sh script does notmap the data path to /container_scratch/data
or the submit command line is changed to specify /container_scratch/data as the job
argument.

Furthermore, the job user will probably not exists inside the container. While the whole

container is started under the job users ID, the job user itself is not configured inside the

container, so the home directory cannot be estimated and must be set explicitly.

Grid Engine Users’s Guide v 8.6.17 81

7 Other Job Types

If the job is binary, i.e. was submitted with the -b y switch, the binary is started in the shell
that is defined in the configuration of the queue the job runs in. Because this is /bin/csh by
default and the csh is not part of most Docker images, this shell must be overwritten by the

-S switch - /bin/sh usually exists everywhere.

Here are some examples for jobs that use the Docker integration and specify the job binary

or job script to start:

• $ qsub -l docker,docker_images="*centos:latest*" -xd "-v /scratch:/data"
my_job.sh /data/input.txt
This job requests to be started in a Docker container that is created from the

“centos:latest” image, the /scratch directory to be bound inside the container to the
/data directory. The job script is transferred from the submit host to the execution
host, the argument to the job script uses the path as it will be called inside of the

container.

• $ qsub -l docker,docker_images="*ubuntu:14.04*" -b y -S /bin/sh hostname
This job requests to be started in a Docker container that is created from the

“ubuntu:14.04” image, it is a binary job which means the job binary or script already
exists on the execution host inside the container. Because the binary would be started

inside the shell configured in the queue, which does not exist in the container, the

Bourne shell is defined to be used instead.

• $ qrsh -l docker,docker_images="*centos:7*" ls -la /uge_mnt
This job is an interactive job, it requests to be started in a Docker container that

is created from the “centos:7” image. By default, an interactive job is a binary job,

i.e. the job script or binary is expected to already exist on the execution host inside the

container. It lists the automatically bound directories.

In order to submit a job that starts the Docker container itself like a binary, i.e. uses the

ENTRYPOINT defined in the Docker image instead of a job script, the keyword NONEmust be
used as job script and the job must be a binary job, e.g.:

$ qsub -l docker,docker_images="*hello-world:latest*" -b y NONE arg1 arg2 argn

These jobs are called “autostart Docker jobs”. For such jobs, the following limitations apply:

• Only sequential batch jobs are supported, but neither interactive jobs submitted by

qrsh or qlogin nor parallel jobs are supported.
• Stdin cannot be redirected to the job.

• The job can only be suspended, unsuspended and killed, but no other signals can be

sent to the job.

• If the Docker daemon is stopped or dies, Univa Grid Engine has no means to control

the job.

• In principle it is possible to provide arguments to this kind of jobs, but the arguments

will be available to the script or binary inside the Docker container only if the Docker

image was created in a way that allows this. Whether the Docker image is suitable can

be tested by manually starting

$ docker run -it image:latest arg1 arg2 arg3
on the execution host. If the script or binary inside the Docker container gets these

Grid Engine Users’s Guide v 8.6.17 82

7 Other Job Types

arguments, it should also get them in a Univa Grid Engine job. If there are arguments

specified in the ENTRYPOINT of the Docker image, the arguments specified on the
command line will be appended to them.

What happens under the hood Univa Grid Engine directly communicates with the Docker

daemon using the Docker Remote API and does not use the docker command line client.
The Remote API is a stateless request-response interface, similar to a web server.

If Univa Grid Engine decides to start a job on a certain execution host in a certain Docker

container, it fills requests forms with information and sends them to the Docker daemon.

The Docker daemon tries to fulfill each request and responds to each request. Each response

contains a status (success or failure) and some responses additionally contain data or an

error message.

To start a normal Docker job, Univa Grid Engine sends these requests to the Docker daemon:

• A request to create a Docker container from the specified Docker image, with the start

user being the job user, the start application being the sge_container_shepherd, the
path bindings and so on.

• A request to give the Docker container its name containing the job ID.

• A request to start the Docker container.

The Docker daemon does this to fulfill the requests:

• To create a Docker container, it extracts the Docker image to a subdirectory and writes

the specified information to a specific file.

• The container name is changed in the internal database of the Docker daemon.

• To start the Docker container, the Docker daemon sets up the environment, defines

the extracted directory to be the root directory for the process to start and executes

the sge_container_shepherd, which acts as init process of the container, i.e. there is
no extra process which “is” the container - the container “is” the application that gets

started, which is the sge_container_shepherd for this kind of jobs.

The sge_container_shepherd then starts the job with all of its arguments, exactly like the
normal sge_shepherd does with normal jobs on the “real” host. If a signal is to be sent
to the job, the execution daemon talks to the sge_container_shepherd via a pipe. The
sge_container_shepherd sends the signal to the job.

If Univa Grid Engine decides to start a Docker job that uses the keyword “NONE” as job script,

it does the same as above, but the start application is the one defined in the Docker image

and is not explicitly set. If the container is created, there is no Univa Grid Engine component

running in it, so Univa Grid Engine has no direct control over the container. Instead, it must

send a request to the Docker daemon in order to send signals to the job, in order to get

online usage, and so on.

7.9.2 Running a parallel Job in Docker containers

For tightly integrated parallel jobs, all tasks except for the master task are started in separate

Docker containers that are created from the same Docker image. For loosely integrated

Grid Engine Users’s Guide v 8.6.17 83

7 Other Job Types

parallel jobs, no task is started in a Docker container by Univa Grid Engine, because Univa

Grid Engine has no control over the slave tasks, i.e. submitting loosely integrated parallel

Docker jobs does not make sense.

Like any normal parallel job, the master task is started like a sequential job that requests

a parallel environment with an amount of slots. Parallel Docker jobs additionally have to

provide the Docker specific requests:

$ qsub -l docker,docker_images="*centos:latest*" -xd "-v /home:home" -l /home/jdoe
-j y -pe parallel_env 3 master_job.sh

The master task is submitted to a “physical” host which is known to Univa Grid Engine but it

is started inside a Docker container, which has a random name.

The slave tasks are just submitted using the usual -inherit switch which requires two
environment variables set in the submit shell:

$ export JOB_ID=17
$ export SGE_TASK_ID=undefined
$ qrsh -inherit slave_host slave_job.sh

All Docker specific request are inherited from the master task and may not be provided in

the qrsh command line!

The slave task is submitted to the slave_host, which is a “physical” host and is known to
Univa Grid Engine. The task itself then is started inside a Docker container which has a

random name and is not known to Univa Grid Engine.

Usually the master task of that parallel job runs the qrsh -inherit, which would not work
for a master task running inside a Docker container, because this Docker container is not

known as an execution host to the sge_qmaster and the execution daemons on the execution
hosts.

To solve this problem, the Administrator can declare a RSMAP complex that defines on each

execution host as many container hostnames as there are slots defined. The job then must

request one element per PE task of this RSMAP complex and the per_pe_task_prologmust
be used to set the hostname and IP of the Docker container.

E.g.: * the Administrator declares an RSMAP complex “cont_hosts” * on execution

host “hostA”, defines the complex values “cont_hosts=2(hostA_cont1 hostA_cont2)

* on execution host”hostB“, defines the complex values”cont_hosts=2(hostB_cont1

hostB_cont2) * the job has to request one element of this complex per task: $ qsub
-l cont_hosts=1,docker,docker_images="*centos:latest*" -xd "-v /home:home" -l
/home/jdoe -j y -pe parallel_env 3 master_job.sh Assume the master task is sched-
uled to “hostA”, both slave tasks are scheduled to “hostB”. The master task gets the RSMAP

value “hostA_cont2” assigned, the slave tasks get “hostB_cont1” and “hostB_cont2” assigned,

so the “per_pe_task_prolog” can set the hostnames and IPs accordingly. With having the

hostnames and IPs registered in DNS, all components now can talk to each other.

7.9.3 Running MPI jobs in Docker containers

If MPI is used for the communcation between the master and slave tasks, a file that contains

the hostnames can be written automatically be Univa Grid Engine. If the “execd_params”

value “CONTAINER_PE_HOSTFILE_COMPLEX” is set to the name of the RSMAP complex

Grid Engine Users’s Guide v 8.6.17 84

7 Other Job Types

used to select the container hostnames, Univa Grid Engine automatically writes a “con-

tainer_pe_hostfile” which is compatible to the normal “pe_hostfile”, but contains all container

names selected for this job. The “prolog” can be used to replace the normal “pe_hostfile”

with the “container_pe_hostfile” in case this shall be used.

7.9.4 Running an array Job in Docker containers

Each task of an array job is started in a different Docker container, but all Docker containers

are created from the same Docker image.

7.9.5 Running a Job in a Docker image that is not available locally

Docker allows not only to use locally available images, but also to automatically download

images from a repository. Because of performance considerations, this is sometimes not

wanted for Univa Grid Engine jobs, so usually a job is scheduled only to an execution host

that already provides the requested Docker image. If a job has to run in an image that is not

yet available, submitting it with a soft request for that image triggers the download of this

image. This means, for a job like this one:

$ qsub -l docker -soft -l docker_images="*fedora:21*" -o /dev/null -j y myjob.sh

Univa Grid Engine will first search for a execution host that fulfills all requests, i.e. that

already has the Docker image fedora:21 locally available. If there is no such host in the
cluster, the job will be scheduled to any execution host that fulfills the docker request and
will tell the Docker daemon to download the image and the start the container.

7.9.6 Using placeholders to dynamically define Docker options

Since Univa Grid Engine 8.5.0, placeholders are allowed in sub-options of the “-xd” option

on the submit command line, sge_request files, job scripts, job classes and job submission

verifier. These placeholders are resolved by corresponding elements of specific RSMAP

complexes the Scheduler selects for the tasks of a job.

The format of these placeholders is:

<placeholder> := ${ <complex_name> "(" <index> ")" }

where complex_name is the name of the corresponding RSMAP complex and index is the

index of the element the Scheduler selects from the RSMAP for this job, starting with 0.

E.g.:

If a resource map defines these values on a host: gpu_map=4(0 1 2 3)
this qsub command line is used:

(Note the “\$” to keep the shell from trying to resolve that variable)

qsub -l docker,docker_images="*some_image*",gpu_map=2
-xd "--device=/dev/gpu\${gpu_map(0)}:/dev/gpu0,

--device=/dev/gpu\${gpu_map(1)}:/dev/gpu1" ...

and the scheduler selects the elements “1” and “3” from the resource map, the command

line is resolved to

Grid Engine Users’s Guide v 8.6.17 85

8 Getting a Consistent View onto the System by Using Sessions

qsub -l docker,docker_images"*some_image*",gpu_map=2
-xd "--device=/dev/gpu1:/dev/gpu0,

--device=/dev/gpu3:/dev/gpu1"...

which means the physical GPUs “gpu1” and “gpu3” are mapped to the virtual GPUs “gpu0”

and “gpu1” inside the container and at the same time are exclusively reserved for the current

job among all Univa Grid Engine jobs.

7.9.7 Support for nvidia-docker 2.0

NVIDIA provides the version 2.0 of their Docker Container Runtime which allows to access

GPUs from within Docker containers. Univa Grid Engine now supports using this Container

Runtime.

Provided the NVIDIA Docker Container Runtime is installed properly on an execution host, a

job that wants to use a NVIDIA GPUmust tell Docker to use the NVIDIA Runtime by specifying

the -xd "--runtime=nvidia" switch on the qsub or qrsh command line. In order to select
a specific GPU, the environment variable NVIDIA_VISIBLE_DEVICES must be set to for the
whole container by specifying it with the -xd "--env NVIDIA_VISIBLE_DEVICES=0" switch.

Univa Grid Engine also supports the Docker run option gpus to select GPUs for the container.
The switch accepts either all to select all GPUs on the host, any integer > 0 to select a specific
amount of GPUs or the parameter device followed by a list of device ids to select specific
GPUs, e.g. -xd "--gpus=device=\"0,1\"". Please note that -xd "--gpus=..." requires
Docker API version 1.40 or newer.

8 Getting a Consistent View onto the System by Using

Sessions

WhenUniva Grid Engine client commands interact with Univa Grid Engine server components

then this is done by using an interface named GDI (Grid Engine Data Interface). This interface

is used to send client requests to the Univa Grid Engine system that are then handled within

the server component and answered by a response message that contains the result for the

client request.

This GDI interface is also used for internal Univa Grid Engine communication between

components running on execution hosts as well as for internal communication between

components within the sge_master component itself.

GDI requests can be divided into two categories: Requests that will change the configu-

ration/state of the Univa Grid Engine system (read-write-requests) and requests that will

gather information to display the configuration/state of the Univa Grid Engine system

(read-only-requests).

Univa Grid Engine 8.2 has been redesigned so that read-write-requests and read-only-

requests can be executed completely independently from each other. Furthermore up to 64

read-only requests can work in parallel which is not possible in Sun Grid Engine, Oracle Grid

Engine and other open source versions of Grid Engine. This ensures faster response times

for all requests and has a huge positive impact on the cluster throughput.

Grid Engine Users’s Guide v 8.6.17 86

8 Getting a Consistent View onto the System by Using Sessions

The drawback of this approach is that GDI read-only-requests might not see the outcome

of recently executed read-write requests in certain situations. E.g. it might happen that a

user submits a job (read-write-request) and immediately does a qstat -j (read-only-request)

which responds with an error which says that the previously created job does not exist.

In some cases such behavior may cause problems and it is desired that requests should be

executed in sequence and for this reason GDI sessions have been introduced that guarantee

a consistent view onto the Univa Grid Engine system. Internally read-only requests that are

executed within the control of a session are delayed until they can see all changes that have

happened previously.

8.1 Communication with Univa Grid Engine without using Sessions

Univa Grid Engine can be installed in a way so that no sessions are required to get a

consistent view onto the Univa Grid Engine system. In that mode the sge_qmaster process
of Univa Grid Engine 8.2 behaves the same way as in prior versions. All commands are

executed in the same sequence as they are received by sge_qmaster and during processing
of each of those requests all previous activities are immediately visible without the need to

use sessions.

To find out if sge_qmaster is running in this mode execute following command:

> qconf -stl
reader000
reader001
reader002
reader003
reader004
...

The output of the qconf -stl command will show the active threads in the sge_qmaster
process. If there are reader-threads active then sessions are required. If there is no line in

the output that starts with reader then sessions are not required.

8.2 Using sessions to communicate with the system

Sessions are configuration objects available since Univa Grid Engine 8.2. They are required

to get a consistent view onto the Univa Grid Engine when read-only-threads where activated

during the installation of the sge_qmaster process. The use of sessions might slow down
processes within sge_qmaster slightly therefore sessions can only be created, modified and
deleted by managers or users that are members of the sessionusers access control list.

Following session related commands are available:

Command Value Specification

qconf -ssil Shows all active sessions including ownership

and end time.

Grid Engine Users’s Guide v 8.6.17 87

8 Getting a Consistent View onto the System by Using Sessions

Command Value Specification

qconf -ssi <session_id> Shows details of an existing session object.

qconf -msi <session_id> Opens an editor and lets the user configure

the session.

qconf -Msi <session_file> Modifies the session using new parameters

from session_file
qconf -asi Adds a new session object

qconf -Asi <session_file> Adds a new session using parameter values

from session_file
qconf -csi Creates a new session with default

parameters.

qconf -dsi <session_id> Deletes the session with the given

session_id.

Table 31: TABLE: Session Commands

The following list of parameters specifies the session configuration:

Parameter Value Specification

session_id The session ID of a session. For sessions that should be created the value

for this attribute has to be NONE so that the sge_qmaster process can
assign a new unique session ID.

owner User name of the user that owns the session. If NONE is specified as
username during the creation of a new session then the executing user

of the configuration command will be the owner of that session.

Only managers and the session owner are allowed to modify or to delete

an existing session and if a session gets created by root or a manager

account on behalf of a regular user then that user should be a member

of the sessionusers access control list.

duration The duration influences the lifetime of a session. Lifetime of a session

begins when the session is created and it ends when the session is not

used for the specified amount of time defined by the duration attribute.

Lifetime of a session is automatically increased by adding duration to the

end_time of that session when it is used.
The default duration of a session is 900 seconds if this is not specified

otherwise in the qmaster_param namedgdi_request_session_timeout‘.
The sge_qmaster process tries to find sessions where the lifetime ended
every 15 minutes and it will delete those sessions automatically. Although

unused sessions will be deleted automatically it is recommended to

delete sessions manually using the qconf -dsi command once a session
is not needed anymore.

Grid Engine Users’s Guide v 8.6.17 88

9 Submission, Monitoring and Control via an API

Parameter Value Specification

start_time Time when the session was created. Start_time of a session cannot be
specified. It is shown with qconf -ssi.

end_time Possible end time of a session. After creation the end_time of a session is
set to start_time plus duration. End_time is moved forward when the
session is used so that it still remains valid for the amount of time

specified by duration after use.
If the session was not used then it is tagged for deletion. The

sge_qmaster process tries to find unused sessions every 15 minutes and
it will delete those sessions automatically. Although unused sessions will

be deleted automatically it is recommended to delete sessions manually

using the qconf -dsi command when a session is not needed anymore.
The end_time of a session is shown by the commands qconf -ssi and
-ssil.

Table 32: TABLE: Session Parameters

Sessions can be used with the -si switch of all client commands (like qsub, qstat, qhost . . .).
Requests sent by the corresponding client to the sge_qmaster daemon will be done as part
of the specified session. If the switch is omitted or if NONE is specified as session_id then
such requests will be executed outside the control of a session.

Here is an example that shows the use of a session:

> set session_id=`qconf -csi`
> set job_id=`qsub -terse -si $session_id -b y sleep 120`
> qstat -si $session_id -j $job_id
> qconf -dsi $session_id

During job submission a session that was previously created is specified. Due to this it

is guaranteed that the qstat command that refers to the same session is able to see the
previously created job. After use the session is deleted.

9 Submission, Monitoring and Control via an API

Note

Using the API is not supported on Windows hosts.

9.1 The Distributed Resource Management Application API (DRMAA)

The Distributed Resource Management Application API is the industry-leading open standard

of the Open Grid Forum www.ogf.org DRMAA working group www.drmaa.org for accessing

Grid Engine Users’s Guide v 8.6.17 89

www.ogf.org
www.drmaa.org

9 Submission, Monitoring and Control via an API

DRMS. The goal of the API is to provide an external interface to applications for basic tasks,

like job submission, job monitoring and job control. Since this standard is adapted by

most DRMS vendors it offers a very high investment protection, when developing a DRM

aware software application, because it can be easily transferred to another DRM. Univa Grid

Engine supports all DRMAA concepts, which allows for the movement of existing DRMAA

applications from different DRM vendors.

9.2 Basic DRMAA Concepts

DRMAA version 1.0 specifies a set of functions and concepts. Each DRMAA application must

contain an initialization and disengagement function which must be called at the beginning

and at the end respectively. In order to do something useful a new DRMAA session must

be created or one existing must be re-opened. When re-opening a DRMAA session, the job

IDs of the session can be reused in order to obtain the job status and gain job control. In

order to submit jobs, a standard job template must be allocated and filled out according to

needs with the job name and the corresponding parameters. This job template than can

then be submitted with a job submission routine. There are two job submission routines

specified: One for individual jobs and one for array jobs. A job can be monitored and

controlled (e.g. holding, releasing, suspending, resuming) once the job is complete and the

exit status can be checked. Additionally DRMAA specifies a set of error codes. In order to

exploit additional functionality, which is only available in Univa Grid Engine, the standard

will allow this with either the native specification functionality or with job categories.

9.3 Supported DRMAA Versions and Language Bindings

Univa Grid Engine supports currently the DRMAA v1.0 standard and is shipped with a fully

featured DRMAA C binding v1.0 and a DRMAA Java binding v1.0. The standards can be

downloaded at www.drmaa.org.

9.4 When to Use DRMAA

Writing applications with DRMAA has several advantages: High job submission throughput

with Univa Grid Engine, the defined workflow is independent from underlying DRM, it is

much easier to use in programming languages like C or Java, and it is a widely known and

adapted standard backed by an experienced community.

9.5 Environment Variable Influences

There are environment variables that can change DRMAA library behavior:

SGE_DRMAA_ENABLE_ERROR_STATE

When this environment variable is set, then jobs that are submitted with drmaa_run_job()

or drmaa_run_bulk_jobs() will change into error state when either during the job start or

during the execution of the job an error occurs. Normally DRMAA jobs will not switch into

error state when something fails.

Grid Engine Users’s Guide v 8.6.17 90

www.drmaa.org

9 Submission, Monitoring and Control via an API

9.6 Examples

9.6.1 Building a DRMAA Application with C**

Compiling, Linking and Running the C Code DRMAA Example

In order to compile a DRMAA application, the drmaa.h must include the file and the DRMAA

library must be available. The drmaa.h file can be found in the $SGE_ROOT/include directory
and the libraries are installed in $SGE_ROOT/lib/$ARCH.

In the following example the root installation directory ($SGE_ROOT) is /opt/uge868 and the

architecture is lx-amd64.

> gcc -I/opt/uge868/include -L/opt/uge868/lib/lx-amd64 -o yourdrmaaapp yourdrmaaapp.c -ldrmaa

In order to run yourdrmaaapp the Univa Grid Engine environment must be present and the

path to the shared DRMAA library must be set.

> export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/uge868/lib/lx-amd64
> ./yourdrmaaapp

Job Submission, Waiting and Getting the Exit Status of the Job

In the following example a job session is initially opened with drmaa_init(). The return

code of the all calls indicate the success of a function (DRMAA_ERRNO_SUCCESS) or if

an error has occurred. In the case of an error, the error string with the corresponding

message is returned. In order to submit a job, a job template must be allocated with

drmaa_allocate_job_template() and the DRMAA_REMOTE_COMMAND parameters must be

set. After a successful job submission with drmaa_run_job() the application waits until the

job is scheduled and eventually finished. Then the exit code of the job is accessed and

printed before the job session is closed by drmaa_exit.

000 #include <stdio.h>
001 #include "drmaa.h"
002
003 int main(int argc, char **argv) {
004
005 /* err contains the return code of the called functions */
006 int err = 0;
007
008 /* allocate a string with the DRMAA string buffer length */
009 char errorstr[DRMAA_ERROR_STRING_BUFFER];
010
011 /* allocate a buffer for the job name */
012 char jobid[DRMAA_JOBNAME_BUFFER];
013
014 /* pointer to a job template */
015 drmaa_job_template_t *job_template = NULL;
016

Grid Engine Users’s Guide v 8.6.17 91

9 Submission, Monitoring and Control via an API

017 /* DRMAA status of a job */
018 int status = 0;
019
020 /* if job exited normally */
021 int exited = 0;
022
023 /* exit code of the job */
024 int exitstatus = 0;
025
026 /* create a new DRMAA session */
027 err = drmaa_init(NULL, errorstr, DRMAA_ERROR_STRING_BUFFER);
028
029 /* test if the DRMAA session could be opened */
030 if (err != DRMAA_ERRNO_SUCCESS) {
031 printf("Unable to create a new DRMAA session: %s\n", errorstr);
032 return err;
033 }
034
035 /* allocate a job template */
036 err = drmaa_allocate_job_template(&job_template, errorstr,
037 DRMAA_ERROR_STRING_BUFFER);
038
039 /* test if the DRMAA job template could be allocated */
040 if (err != DRMAA_ERRNO_SUCCESS) {
041 printf("Unable to allocate a new job template: %s\n", errorstr);
042 /* close the DRMAA session and exit */
043 err = drmaa_exit(errorstr, DRMAA_ERROR_STRING_BUFFER);
044 if (err != DRMAA_ERRNO_SUCCESS) {
045 printf("Unable to close DRMAA session: %s\n", errorstr);
046 }
047 return err;
048 }
050
051 /* specify the job */
052 err = drmaa_set_attribute(job_template, DRMAA_REMOTE_COMMAND, "./job.sh",
053 errorstr, DRMAA_ERROR_STRING_BUFFER);
054
055 if (err != DRMAA_ERRNO_SUCCESS) {
056 printf("Unable to set the remote command name: %s\n", errorstr);
057 /* close the DRMAA session and exit */
058 err = drmaa_exit(errorstr, DRMAA_ERROR_STRING_BUFFER);
059 if (err != DRMAA_ERRNO_SUCCESS) {
060 printf("Unable to close DRMAA session: %s\n", errorstr);
061 }
062 return err;
063 }
064
065 /* submit the job */
066 err = drmaa_run_job(jobid, DRMAA_JOBNAME_BUFFER, job_template, errorstr,

Grid Engine Users’s Guide v 8.6.17 92

9 Submission, Monitoring and Control via an API

067 DRMAA_ERROR_STRING_BUFFER);
068
069 /* wait for the job */
070 err = drmaa_wait(jobid, NULL, 0, &status, DRMAA_TIMEOUT_WAIT_FOREVER,
071 NULL, errorstr, DRMAA_ERROR_STRING_BUFFER);
072
073 if (err != DRMAA_ERRNO_SUCCESS) {
074 printf("Unable to wait for the job: %s\n", errorstr);
075 /* close the DRMAA session and exit */
076 err = drmaa_exit(errorstr, DRMAA_ERROR_STRING_BUFFER);
077 if (err != DRMAA_ERRNO_SUCCESS) {
078 printf("Unable to close DRMAA session: %s\n", errorstr);
079 }
080 return err;
081 }
082
083 /* print the exit status of the job if terminated normally (and don't
084 * check a function error) */
085 drmaa_wifexited(&exited, status, NULL, 0);
086
087 if (exited == 1) {
088 drmaa_wexitstatus(&exitstatus, status, NULL, 0);
089 printf("Exit status of the submitted job: %d\n", exitstatus);
090 }
091
092 /* free the job template */
093 err = drmaa_delete_job_template(job_template, errorstr, DRMAA_ERROR_STRING_BUFFER);
094
095 if (err != DRMAA_ERRNO_SUCCESS) {
096 printf("Unable to delete the job template: %s\n", errorstr);
097 /* close the DRMAA session and exit */
098 err = drmaa_exit(errorstr, DRMAA_ERROR_STRING_BUFFER);
099 if (err != DRMAA_ERRNO_SUCCESS) {
100 printf("Unable to close DRMAA session: %s\n", errorstr);
101 }
102 return err;
103 }
104
105 /* close the DRMAA session and exit */
106 err = drmaa_exit(errorstr, DRMAA_ERROR_STRING_BUFFER);
107 if (err != DRMAA_ERRNO_SUCCESS) {
108 printf("Unable to close DRMAA session: %s\n", errorstr);
109 return err;
110 }
111
112 return 0;
113 }

Grid Engine Users’s Guide v 8.6.17 93

9 Submission, Monitoring and Control via an API

9.6.2 Building a DRMAA Application with Java

When writing a Java DRMAA application it must be taken into account that the Java DR-

MAA library internally is based on the C DRMAA implementation. The implication is that

Java DRMAA is fast, but this native code dependency must be handled properly. The DR-

MAA application must be run on a submission host with an enabled Univa Grid Engine

environment.

Compiling and Running the Java Code DRMAA Example

In order to compile a Java DRMAA application the Java CLASSPATH variable must point

to $SGE_ROOT/drmaa/lib/drmaa.jar. Alternatively the -cp or -classpath parameter can be

passed to the Java compiler at the time of compilation.

> javac -cp $SGE_ROOT/drmaa/lib/drmaa.jar Sample.java

To run the application the native code library (libdrmaa.so) must be available in the

LD_LIBRARY_PATH environment variable. In this example $SGE_ROOT is expected to be

/opt/uge868.

> export LD_LIBRARY_PATH=LD_LIBRARY_PATH:/opt/uge868/drmaa/lib/linux
> java -cp $SGE_ROOT/drmaa/lib/drmaa.jar:./ Sample

Job Submission, Waiting and Getting the Exit Status of the Job

The following example has the same behaviour as the C example in the section above. First

a DRMAA job session is created through a factory method (line 19-22). A new session is

opened with the init() call (line 23). After a job template is allocated (line 26) and the remote

command parameter (line 29) and the job argument (line 32) is set accordingly, the wait

method does not terminate as long the job runs (line 39). Finally the exit status of the job is

checked (line 41-47), the job template is freed (line 50) and the session is closed (line 53).

000 import java.util.Collections;
001 import org.ggf.drmaa.*;
002
003 public class Sample {
004
005 public static void main(String[] args) {
006
007 Sample sample = new Sample();
008
009 try {
010 sample.example1();
011 } catch (DrmaaException exception) {
012 /* something went wrong */
013 System.out.println("DRMAA Error: " + exception.getMessage());
014 }
015 }
016

Grid Engine Users’s Guide v 8.6.17 94

9 Submission, Monitoring and Control via an API

017 public void example1() throws DrmaaException {
018 /* get the class, which is needed for creating a session */
019 SessionFactory factory = SessionFactory.getFactory();
020
021 /* create a new session */
022 Session s = factory.getSession();
023 s.init(null);
024
025 /* create a new job template */
026 JobTemplate jobTemplate = s.createJobTemplate();
027
028 /* set "sample.sh" as job script */
029 jobTemplate.setRemoteCommand("/path/to/your/job.sh");
030
031 /* set an additional argument */
032 jobTemplate.setArgs(Collections.singletonList("myarg"));
033
034 /* submit the job */
035 String jobid = s.runJob(jobTemplate);
036 System.out.println("The job ID is: " + jobid);
037
038 /* wait for the job */
039 JobInfo status = s.wait(jobid, Session.TIMEOUT_WAIT_FOREVER);
040
041 /* check if job exited (and was not aborted) */
042 if (status.hasExited() == true) {
043 System.out.println("The exit code of the job was: "
044 + status.getExitStatus());
045 } else {
046 System.out.println("The job didn't finish normally.");
047 }
048
049 /* delete the job template */
050 s.deleteJobTemplate(jobTemplate);
051
052 /* close DRMAA session */
053 s.exit();
054 }
055
056 }

9.7 Further Information

Java DRMAA related information can be found in the doc directory (HTML format). Further

information about DRMAA specific attributes can be found in the DRMAA related man pages:

drmaa_allocate_job_template, drmaa_get_next_attr_value, drmaa_misc, drmaa_synchronize,

drmaa_attributes, drmaa_get_next_job_id, drmaa_release_attr_names, drmaa_version,

drmaa_control, drmaa_get_num_attr_names, drmaa_release_attr_values, drmaa_wait,

Grid Engine Users’s Guide v 8.6.17 95

10 Advanced Concepts

drmaa_delete_job_template, drmaa_get_num_attr_values, drmaa_release_job_ids,

drmaa_wcoredump, drmaa_exit, drmaa_get_num_job_ids, drmaa_run_bulk_jobs, dr-

maa_wexitstatus, drmaa_get_attribute, drmaa_get_vector_attribute, drmaa_run_job,

drmaa_wifaborted, drmaa_get_attribute_names, drmaa_get_vector_attribute_names,

drmaa_session, drmaa_wifexited, drmaa_get_contact,drmaa_init, drmaa_set_attribute, dr-

maa_wifsignaled, drmaa_get_DRMAA_implementation, drmaa_jobcontrol, drmaa_set_vector_attribute,

drmaa_wtermsig, drmaa_get_DRM_system, drmaa_job_ps, drmaa_strerror, jsv_script_interface,

drmaa_get_next_attr_name, drmaa_jobtemplate, drmaa_submit

10 Advanced Concepts

Besides the rich set of basic functionality discussed in the previous sections, Univa Grid

Engine offers several more sophisticated concepts at time of job submission and during job

execution. This chapter describes such functionality, which becomes important for more

advanced users.

10.1 Job Dependencies

In many cases the jobs, which are submitted with Univa Grid Engine are not self-contained.

Those jobs are usually arranged in a kind of workflow with more or less complex job

dependencies. Such workflows can be mapped to Univa Grid Engine with the submission

parameter hold_jid <jobid list>. The <jobid list> contains one or a comma separated list of

ids of existing jobs of which the submitted job is waiting for before it can be scheduled. In

order get the job IDs, submit the jobs with a name (-N <name>) and use the name as ID.

Alternatively the qsub parameter -terse can be used, which transforms the command line

result of qsub so that only the job id is returned. This makes it very simple to use within

scripts.

10.1.1 Examples

In the following examples, basic workflow control patterns (see www.workflowpatterns.com)
are mapped into a Univa Grid Engine job workflow.

Sequence Pattern

The most simple workflow pattern is the sequence pattern. It is used when a bunch of job

must be executed in a pre-defined order. With Univa Grid Engine it is possible to submit all

jobs at once but the order is still guaranteed.

qsub -b y /bin/sleep 60
Your job 4 ("sleep") has been submitted
qsub -b y -hold_jid 4 /bin/sleep 60
Your job 5 ("sleep") has been submitted

Grid Engine Users’s Guide v 8.6.17 96

www.workflowpatterns.com

10 Advanced Concepts

qsub -b y -hold_jid 5 /bin/sleep 60
Your job 6 ("sleep") has been submitted

> qstat
job-ID prior name user state submit/start at queue slots ja- task-ID

4 0.55500 sleep daniel r 03/01/2011 15:16:50 all.q@host1 1
5 0.00000 sleep daniel hqw 03/01/2011 15:17:52 1
6 0.00000 sleep daniel hqw 03/01/2011 15:17:57 1

Parallel Split/Fork Pattern

The fork pattern is used when a job sequence involves tasks that are executed in parallel. In

this case two or more jobs depend on just one job, meaning they are scheduled after the

job is complete. In Univa Grid Engine , this is mapped through setting the hold job ID value

of multiple jobs to the same job.

qsub -terse -b y /bin/sleep 60
4
qsub -b y -hold_jid 4 /bin/sleep 60
Your job 5 ("sleep") has been submitted
qsub -b y -hold_jid 4 /bin/sleep 60
Your job 6 ("sleep") has been submitted

> qstat
job-ID prior name user state submit/start at queue slots ja-task-ID

4 0.55500 sleep daniel r 03/01/2011 16:00:50 all.q@host1 1
5 0.00000 sleep daniel hqw 03/01/2011 16:00:58 1
6 0.00000 sleep daniel hqw 03/01/2011 16:01:00 1

> qstat
job-ID prior name user state submit/start at queue slots ja-task-ID

5 0.00000 sleep daniel r 03/01/2011 16:00:58 1
6 0.00000 sleep daniel r 03/01/2011 16:01:00 1

In this example job 5 and 6 depending from job 4.

Grid Engine Users’s Guide v 8.6.17 97

10 Advanced Concepts

After job 4 finishes both jobs are scheduled within the same time.

Synchronization Pattern

With the synchronization pattern, a job starts (is scheduled) when all dependencies are

fulfilled, i.e. that all of the waiting jobs have completed. It is usually used after parallel

sections induced by the parallel split/fork pattern or when a job is one which finalizes the

work of multiple jobs (post processing).

qsub -b y /bin/sleep 60
Your job 4 ("sleep") has been submitted
qsub -b y /bin/sleep 120
Your job 5 ("sleep") has been submitted
qsub -b y -hold_jid 4,5 /bin/sleep 60
Your job 6 ("sleep") has been submitted

> qstat
job-ID prior name user state submit/start at queue slots ja-task-ID
--

4 0.55500 sleep daniel r 03/01/2011 16:24:50 all.q@host1 1
5 0.00000 sleep daniel r 03/01/2011 16:24:54 all.q@host2 1
6 0.00000 sleep daniel hqw 03/01/2011 16:24:57 1

> qstat
job-ID prior name user state submit/start at queue slots ja-task-ID

5 0.00000 sleep daniel r 03/01/2011 16:24:54 all.q@host2 1
6 0.00000 sleep daniel hqw 03/01/2011 16:24:57 1

In this example the job 6 depends on two previously submitted jobs. The hold state of the

job is removed not before job 4 and job 5 ended.

10.2 Using Environment Variables

During job execution a number of environment variables are set from Univa Grid Engine

and are available for the executing script/binary. These variables contain information about

Univa Grid Engine specific settings, job submission related information and other details.

Additionally the user can specify at time of submission using the -v and -V parameter self-

defined environment variables. While -v expects a list of variable=value pairs, which are

passed-through from job submission to the jobs environment, the -V parameter transfers

all environment variables from the job submission context into the jobs execution context.

Grid Engine Users’s Guide v 8.6.17 98

10 Advanced Concepts

qrsh -v answer=42 myscript.csh

In myscript.csh $answer has the value 42.

setenv answer 42
qrsh -V myscript.csh

In myscript.csh $answer has the value 42.

In the following tables all Univa Grid Engine environment variables available during job

execution are listed:

Variable Name Semantic

SGE_ARCH The architecture of the host on which the job is running.

SGE_BINARY_PATH The absolute path to the Univa Grid Engine binaries.

SGE_JOB_SPOOL_DIR The directory where the Univa Grid Engine shepherd stores

information about the job.

SGE_JSV_TIMEOUT Timeout value (in seconds), when the client JSV will be restarted.

SGE_STDERR_PATH The absolute path to the standard error file, in which Univa Grid

Engine writes errors about job execution.

SGE_STDOUT_PATH The absolute path to the standard output file, in which Univa

Grid Engine writes the output of the job.

SGE_STDIN_PATH The absolute path to file, the job uses as standard input.

ENVIRONMENT Univa Grid Engine fills in BATCH to identify it as an Univa Grid

Engine job submitted with qsub.

HOME Path to the home directory of the user.

HOSTNAME Name of the host on which the job is running.

JOB_ID ID of the Univa Grid Engine job.

JOB_NAME Name of the Univa Grid Engine job.

JOB_SCRIPT Name of the script, which is currently executed.

LOGNAME Login name of the user running the job on the execution host.

PATH The default search path of the job.

QUEUE The name of the queue in which the job is running.

REQUEST The name of the job specified with the -N option.

RESTARTED Indicates if the job was restarted (1) or if it is the first run (0).

SHELL The login shell of the user running the job on the execution host.

TMPDIR The absolute path to the temporary directory on the execution

host.

TMP The absolute path to the temporary directory on the execution

host.

TZ The timezone set from the execution daemon.

Grid Engine Users’s Guide v 8.6.17 99

10 Advanced Concepts

Variable Name Semantic

USER The login name of the user running the job.

Table 33: Standard Job Environment Variables

Variable Name Semantic

SGE_O_HOME The home directory on the submission host.

SGE_O_HOST The name of the host, on which the job is submitted.

SGE_O_LOGNAME The login name of the job submitter.

SGE_O_MAIL The mail directory of the job submitter.

SGE_O_PATH The search path variable of the job submitter.

SGE_O_SHELL The shell of the job submitter.

SGE_O_TZ The time zone of the job submitter.

SGE_O_WORKDIR The working directory path of the job submitter.

Table 34: Job Submission Related Job Environment Variables

NHOSTS The number of hosts on which this parallel job is executed.

NQUEUES The number of queues on which this parallel job is executed.

NSLOTS The number of slots this parallel job uses (1 for serial jobs).

PE Only available for parallel jobs: The name of the parallel

environment in which the job runs.

PE_HOSTFILE Only available for parallel jobs: The absolute path to the pe_hostfile.

Table 35: Parallel Jobs Related Job Environment Variables

SGE_CKPT_ENV Checkpointing jobs only: Selected checkpointing environment.

SGE_CKPT_DIR Checkpointing jobs only: Path of the checkpointing interface.

Table 36: Checkpointing Jobs Related Job Environment Variables

SGE_TASK_ID The task number of the array job task the job represents. If the

job is not an array task, the variable contains undefined.

Grid Engine Users’s Guide v 8.6.17 100

10 Advanced Concepts

SGE_TASK_FIRST The task number of the first array job task. If the job is not an

array task, the variable contains undefined.

SGE_TASK_LAST The task number of the last array job task. If the job is not an

array task, the variable contains undefined.

SGE_TASK_STEPSIZE Contains the step size of the array job. If the job is not an array

task, the variable contains undefined.

Table 37: Array Jobs Related Job Environment Variables

10.3 Using the Job Context

Sometimes it is necessary that a job makes its internal state visible to qstat. This can be done

with the job execution context. Job context variables can be initially set on job submission

time with the -ac name=value parameter and altered/added and deleted during run-time

with qalter -ac or -dc switch. In the following example a job script makes the internal job

state visible to the qstat client. The context_example.sh job script looks like the following:

00 #!/bin/sh
01
02 sleep 15
03
04 $SGE_BINARY_PATH/qalter -ac STATE=staging $JOB_ID
05
06 sleep 15
07
08 $SGE_BINARY_PATH/qalter -ac STATE=running $JOB_ID
09
10 sleep 15
11
12 $SGE_BINARY_PATH/qalter -ac STATE=finalizing $JOB_ID

Now the job with the context STATE=submitted is submitted and the context is filtered with

the grep command every 15 seconds.

> qsub -ac STATE=submitted context_example.sh
Your job 4 ("context_example.sh") has been submitted
> qstat -j 4 | grep context
context: STATE=submitted
> sleep 15
> qstat -j 4 | grep context
context: STATE=staging
> sleep 15
> qstat -j 4 | grep context
context: STATE=running
> sleep 15
> qstat -j 4 | grep context
context: STATE=finalizing

Grid Engine Users’s Guide v 8.6.17 101

10 Advanced Concepts

10.4 Transferring Data

A common way to transfer input and output data to and from the user application is to

use a distributed or network file system like NFS. While this is easy to handle for the user

applications, the performance can be a bottleneck, especially when the data is accessed

multiple times sequentially. Hence Univa Grid Engine provides interfaces and environment

variables for delegated file staging in order to support the user with hook points for accessing

and transferring data in different ways. In the following section these approaches for

transferring user data as well as their advantages and drawbacks are discussed.

10.4.1 Transferring Data within the Job Script

While the job script is transferred from the submission host to the execution host, the data

the job is working on remains unknown and therefore unreflected by the qsub command. If

the necessary input and output files are only available through a slow network file system

on the execution host, they can be staged in and out from the job itself to the local host.

In order to do so, Univa Grid Engine creates a local temporary directory for each job and

deletes it automatically after the job ends. The absolute path to this local directory is as

$TMPDIR environment variable available during job run-time. In the following example an

I/O intensive job copies the input data set from the NFS exported home directory of the user

to the local directory and the results back to the home directory.

#!/bin/sh
...
copy the data from the exported home directory to the temporary directory
cp ~/files/largedataset.csv $TMPDIR/largedataset.csv
do data processing
...
copy results back to user home directory
cp $TMPDIR/results ~/results

10.4.2 Using Delegated File Staging in DRMAA Applications

The Univa Grid Engine DRMAA implementation comes with built-in support for file stag-

ing. The administrator must configure appropriate prolog and epilog scripts, which are

executed before the DRMAA jobs starts and after the DRMAA job ends. Theses scripts can

be configured in the global configuration (qconf -mconf), in the host configuration (qconf

-mconf hostname), and in the queue configuration (qconf -mq queuename). The script that

is executed depends on the scripts which are configured. The host configuration overrides

the global configuration and the queue configuration dominates the host configuration.

In order to make the job and epilog script job obvious, a set of variables is defined by Univa

Grid Engine. These variables can be used in the configuration line, where the path to the

pro- and epilog is defined.

: Delegated File Staging Variables

Example: Copy the DRMAA Job Output File

Grid Engine Users’s Guide v 8.6.17 102

10 Advanced Concepts

In the following example an epilog script is parameterized in a way that the DRMAA job

output file is copied after the job ends to an user defined host and directory.

qconf -mconf
...
epilog /path/to/epilog.sh $fs_stdout_file_staging $fs_stdout_host $fs_stdout_path
$fs_stdout_tmp_path
...

The epilog.sh script looks like the following:

000 #!/bin/sh
001
002 doFileStaging=$1
003 outputHost=$2
004 outputHostPath=$3
005 tmpJobPath=$4
006
007 if ["x$doFileStaging" = "x1"]; then
008
009 # transfer file from execution host to host specified in DRMAA file
010 echo "Copy file $tmpJobPath to host $outputHost to $outputHostPath"
011 scp $tmpJobPath $outputHost:$outputHostPath
012
013 fi

Finally the DRMAA delegated file staging must be turned on:

qconf -mconf
...

delegated_file_staging true

After this is configured by the Univa Grid Engine administrator everything is the prepared

from the Univa Grid Engine side. The DRMAA application now has to determine where to

copy the information of the output file in the job template. The following code example

shows how to accomplish this with Java DRMAA.

/* enable transfer output file to host "yourhostname" in file "/tmp/JOBOUTPUT" */
jobTemplate.setOutputPath("yourhostname:/tmp/JOBOUTPUT");
/* disable transfer input file, enable transfer output file, disable transfer error file *
FileTransferMode mode = new FileTransferMode(false, true, false);
jobTemplate.setTransferFiles(mode);

Go back to the Univa Grid Engine Documentation main page.

Grid Engine Users’s Guide v 8.6.17 103

10 Advanced Concepts

10.5 Manual, Semi-Automatic and Automatic Preemption

Univa Grid Engine clusters can cope with different types of competing workloads. The

configuration of the Univa Grid Engine scheduler determines how different workloads will be

scheduled in the system. Policies can be combined to achive almost any type of scheduling.

In previous versions of Univa Grid Engine enforcing policies was sometimes difficult espe-

cially when high priority jobs required resources of lower priority jobs that already consumed

resources like slots, memory or licenses. In such cases slot-wise suspend on subordinate

queues was used to release resources in use by other jobs or reservation and advance

reservation functionality could be used to reserve resources for high priority jobs while they

are pending in the system.

Univa Grid Engine 8.3 (and above) now provides the functionality to release resources when

required resources are already in use. This can be done through preemption. This section

describes preemptive scheduling as an addition to the Univa Grid Engine job handling and

scheduling that nowmakes it possible for high priority work to force the release of resources

in order to run in the cluster.

10.5.1 Preemption Terms

Following paragraphs describe a couple of terms that are used throughout this section.

Jobs which have high priority based on the configured policies can get the role of a preemption

consumer that can cause a preemption action to be performed for one or more running jobs

that have the role of a preemption provider. In general all those running jobs are considered

as preemption provider where the priority is lower than that of the preemption consumer.

There are different preemption actions available in Univa Grid Engine. What all of them have

in common is that they will make all or a subset of the bound resources of a preemption

provider available so that they can be used by one or more preemption consumer. Different

preemption actions differ in the way how bound resources are freed and how the Univa Grid

Engine system will make the bound resources available.

Preemption actions can be executed by Univa Grid Engine due to three different preemption

triggers. A preemption trigger will define the time and has an influence on the chosen

preemption action that is performed. In general preemption trigger can be manual, semi-

automatic or automatic.

A preemption consumer that consumes resources provided through triggering a preemption

action has the role of a preemptor whereas those jobs that get forced to free resources are

considered as preemptee.

Note

In Univa Grid Engine 8.3 manual preemption is implemented. semi-automatic or

automatic trigger will follow with upcoming releases.

10.5.2 Preemption Trigger and Actions

Univa Grid Engine 8.3 provides six different preemption actions to preempt a job. With

manual preemption the user/manager has to choose which of the available preemptive

Grid Engine Users’s Guide v 8.6.17 104

10 Advanced Concepts

actions should be used to trigger preemption of a job. With semi-automatic and automatic

preemption mechanisms (available with future versions of Univa Grid Engine) either the

system configuration or the Univa Grid Engine scheduler decides automatically which

preemption action will be taken to release resources.

The six preemptive actions differ in the way the resources will be available for other jobs

after the preemptee is preempted. Some of those actions have restrictions on which job

types they can be applied to as well as who is allowed to trigger them. The actions differ

in the way how they treat the processes that are executed on behalf of a job that gets

preempted.

Within Univa Grid Engine all preemption actions are represented by single capital letter (T,

R, C, P, N or S) that is either passed to a command, specified in a configuration object or is

shown in command output displaying the internal state of a job.

Some of the preemption actions trigger the suspend_method that might be defined

in the queue where the preemptee is executed. To be able to distinguish differ-

ent preemption actions within the suspend_method an optional argument named

action ∗ ∗maybeusedaspseudoargumentwhenthemethodisdefined.The ∗ ∗action argument will
be expanded to the corresponding letter that represents the preemptive action during

runtime.

Terminate Action: The preemptee will be terminated. As soon as all underlying processes

are terminated all resources that were bound by that preemptee will be reported as free.

The T-action can be applied to any job. Users can apply it only to their own jobs.

Checkpoint Action: The preemptee will be checkpointed. As soon as a checkpoint is writ-

ten and all underlying processes are terminated all bound resources will be reported as

available and the job will be rescheduled. This preemption action can only be applied to

checkpointable jobs where a checkpointing environment was specified during submission

of the job.

Rerun Action: The preempted job will be rescheduled. As soon as all underlying processes

are terminated all bound resources will be reported as available. Managers can enforce the

rerun of jobs even if those jobs are not tagged as rerun-able on the job or queue level.

Preemption Action: The preemptee will be preempted. Preempted means that the config-

ured queue-suspend method ($action set to P) will be executed that might trigger additional

operations to notify the processes about the upcoming preemption so that those processes

can release bound resources by itself. After that the processes are suspended and all con-

sumable resources, where the attribute available-after-preemption (aapre) is set to true, are

reported as free. Not-available-after-preemption resources are still reported to be bound

by the preempted job. The preemption action can be applied to all preemption providers

whereas users can only preempt their own jobs.

eNhanced Suspend Action: Similar to the preempt action the queue suspend_method

($action set to N) will be triggered before the preemptee gets suspended. Only non-

memory-based consumables (including License Orchestrator managed license resources)

are reported as free when the processes are suspended. Memory-based consumables that

are available-after-preemption and also not-available-after-preemption consumables will

still be reported as bound by the enhanced suspended job. This preemption action can be

applied to all preemption providers. Users can only preempt their own jobs.

Grid Engine Users’s Guide v 8.6.17 105

10 Advanced Concepts

Suspend Action: Similar to the preempt action the triggered method will be the sus-

pend_method ($action set to S) before the preemptee gets suspended. Only consumed

slots (and License Orchestrator-managed license resources) will be available after suspen-

sion. All other resources, independent if they are tagged as available-after-preemption or

not-available-after-preemption in the complex configuration, will be reported as still in use.

This preemption action can be applied to all preemption providers. Users can only preempt

their own jobs.

The obvious question regarding preemption is; which of the six preemptive actions should be

chosen to manually preempt a job? If a job is checkpointable then it should be the C-action.

Here all consumed resources of the preemptee will be available for higher priority jobs. The

preemptee can continue its work when it is restarted from the last written checkpoint.

The T-action and the R-actions release the full set of resources but they should be seen

as the last resort when no other less disruptive preemptive actions can be applied. The

reason for this is that the computational work of the preemptee up to the point in time

where the preemptee is rescheduled or terminated is typically lost which is a waste of cluster

resources.

From the Univa Grid Engine perspective the P-action makes all bound resources (slots

+ memory + other consumable resources where aapree of the complex is set to true)

available for higher priority jobs. But this operation is only correct if the machine has

enough swap space configured so that the underlying operating system is able to move

consumed physical memory pages of the suspended processes into that swap space and

when the application either releases consumed resources (like software licenses, special

devices, . . .) automatically or when a suspend_method can be configured to trigger the

release of those resources. The N-action can be used for jobs that run on hosts without

or with less configured swap space. The N action will release only non-memory-based

consumables (slots + other consumable resources where aapree of the complex is set to

true).

If jobs either do not use other resources (like software licenses, special devices, . . .) and

when in use memory on the node does not need to be released, then the S-action can be

chosen. It is the simplest preemption action that provides slots (and License Orchestrator

licenses) only after preemption. Please note that the S-action and S-state of jobs is different

from the s-state of a job (triggered via qmod -s command). A regularly suspended job

does not release slots of that job. Those slots will remain in use by the job that was

suspended.

The P and N-action will make consumable resources of preemptees available for higher

priority jobs. This will be done automatically for all preconfigured consumable resources in

a cluster. For those complexes the available-after-preemption-attribute (aapre) is set to YES.

Managers of a cluster can change this for predefined complexes. They also have to decide if

a site defined resource is available after preemption. For resources that should be ignored

by the preemptive scheduling functionality the aapre-attribute can be set to NO.

Please note that the resource set for each explained preemptive action defines the maxi-

mum + set of resources that might get available through that preemption action. Additional

scheduling parameters (like prioritize_preemptees or preemptees_keep_resources that

are further explained below) might reduce the resource set that get available through

preemption to a subset (only those resources that are demanded by a specified preemp-

tion_consumer) of the maximum set.

Grid Engine Users’s Guide v 8.6.17 106

10 Advanced Concepts

10.5.3 Manual Preemption

Manual preemption can be triggered with the qmod command in combination with the -p

command line switch. The -p expects one job ID of a preemption_consumer followed by one

or multiple job IDs or job names of preemption_provider. The last argument contains an

optional character representing one of the six preemptive_actions. When the last argument

is omitted P-action will be used as default.

Syntax:

qmod [-f] -p <preemption_consumer>
<preemption_provider> [<preemption_provider> ...]
[<preemption_action>]

<preemption_consumer> := <job_ID> .
<preemption_provider> := <job_ID> | <job_name> .
<preemption_action> := "P" | "N" | "S" | "C" | "R" | "T" .

The manual preemption request will only be accepted if it is valid. Manual preemption

request will be rejected when:

• Resource reservation is disabled in the cluster.

• preemption_consumer has no reservation request.

• At least one specified preemption_provider is not running.

• C-action is requested but there is at least one preemption_provider that is not check-

pointable.

• R-action is requested but there is at least one preemption_provider that is neither tagged

as rerunnable nor the queue where the job is running is a rerunnable queue. (Manager

can enforce the R-action in combination with the -f command line argument).

Manual preemption requests are not immediately executed after they have been accepted

by the system. The Univa Grid Engine scheduler is responsible for triggering manual

preemption during the next scheduling run. Preemption will only be triggered if the re-

sources are not available to start the preemption consumer within a configurable time frame

(see preemption_distance below). If enough resources are available or when the scheduler

sees that they will be available in near future then the manual preemption request will be

ignored.

Please note that resources available through preemption are only reserved for the specified

preemption_consumer as long as there are no other jobs of higher priority that demand those

resources. If there are jobs of higher priority then those jobs will get the resources and the

specified preemption_consumer might stay in pending state until either the higher priority

jobs leaves the system or another manual preemption request is triggered.

Preemptees will automatically trigger a reservation of all resources lost due to preemption.

This means that Preemptees can be reactivated as soon as they are eligible due to priority

and as soon as the missing resources are available. There is no dependency between a

preemptor and the preemptees. All or a subset of preemptees might get restarted even if

the preemptor is still running if requested resources are added to the cluster or become

available due to other jobs completing.

Grid Engine Users’s Guide v 8.6.17 107

10 Advanced Concepts

Preemtees will have the jobs state P, N or S (shown in the qstat output or qmon dialogs)

depending of the corresponding preemption action that was triggered. Those jobs, as well

as preemptees that are rescheduled due to the R-action, will appear as pending jobs even if

they still hold some resources. Please note that regularly suspended jobs (in s-state due

to qmod -s) still consume all resources and therefore block the queue slots for other jobs.

qstat -j command can be used to see which resources are still bound by preemptees.

10.5.4 Preemption Configuration

The following scheduling configuration parameters are available to influence the preemptive

scheduling as well as the preemption behaviour of the Univa Grid Engine cluster.

max_preemptees: The maximum number of preemptees in the cluster. Preempted jobs

may hold some resources such as memory and if the preemptees_keep_resources param-

eter is configured might keep most of their resources while in a preempted state. A high

number of preemptees can significantly impact cluster operation and throughput. Limiting

the number of preemptees will limit the amount of held but unused resources.

prioritize_preemptees: By setting this parameter to true or 1 preemptees get a reserva-

tion before the regular scheduling is done. This can be used to ensure that preemptees

get restarted again at the earliest possibly opportunity when the preemptor finishes, un-

less resources required by the preemptee are still held by jobs which were backfilled.

prioritize_preemptees in combination with disabling backfilling provides a guarantee that

preemptees get restarted when the preemptor finishes, at the expense of lower cluster

utilization.

preemptees_keep_resources: When a job gets preempted the freed resources will only be

consumed by the preemptor. This prevents resources of a preemptee from being consumed

by other jobs. prioritize_preemptees and preemptees_keep_resources in combination

provide a guarantee that preemptees get restarted as soon as the preemptor finishes, at the

expense of a waste of resources and bad cluster utilization. Exception: Licenses managed

through License Orchestrator and a license manager cannot be held by a preemptee. As

the preemptee processes are suspended the license manager might assume the license

is free which will lead to the license be consumed by a different job. When the preemptee

processes get unsuspended a license query will fail if the license is held.

preemption_distance: A preemption will only be triggered if the resource reservation that

could be created for a job is farther in the future than the given time interval (hh:mm:ss de-

fault 00:15:00). Reservation can be disabled by setting the value to 00:00:00. No Reservation

will be created if job preemption is forced by a manager manually using qmod -f -p

10.5.5 Preemption in Combination with License Orchestrator

License complexes that are reported by License Orchestrator are automatically defined as

available-after-preemption (aapre is set to YES). This means that when a Univa Grid Engine

job that consumes a License Orchestrator license resource gets preempted, it triggers an

automatic preemption of the corresponding License Orchestrator license request. The

license will be freed and is then available for other jobs.

Manual preemption triggered in one Univa Grid Engine cluster does not provide a guarantee

that the specified preemption consumer (or even a different job within the same Univa

Grid Engine Users’s Guide v 8.6.17 108

10 Advanced Concepts

Grid Engine cluster) will get the released resources. The decision which cluster will get the

released resource depends completely on the setup of the License Orchestrator cluster.

Consequently it might happen that a license resource that gets available through preemption

in one cluster will be given to a job in a different cluster if the final priority of the job/cluster

is higher than that of the specified preemption consumer.

10.5.6 Common Use Cases

License consumable (without License Orchestrator) Scenario: There is a license-

consumable defined that has a maximum capacity and multiple jobs compete for the

license-consumable by requesting one or multiple of those licenses.

Complex definition:

$ qconf -sc
...
license lic INT <= YES YES 0 0 YES
...

The last YES defines the value of aapre. This means that the license resource will be available

after preemption.

License capacity is defined on global level:

$ qconf -se global
...
complex_values license=2

When two jobs are submitted into the cluster both licenses can be consumed by the jobs.

$ qsub -l lic=1 -b y -l h_rt=1:00:00 sleep 3600
$ qsub -l lic=1 -b y -l h_rt=1:00:00 sleep 3600
...

$ qstat -F lic
...
all.q@rgbtest BIPC 0/1/60 lx-amd64

gc:license=0
3000000005 0.55476 sleep user r

all.q@waikiki BIPC 0/1/10 0.00 lx-amd64

gc:license=0
3000000004 0.55476 sleep user r 04/02/2015 12:32:54 1

Submission of a higher priority job requesting 2 licenses and resource reservation:

$ qsub -p 100 -R y -l lic=2 -b y -l h_rt=1:00:00 sleep 3600

Grid Engine Users’s Guide v 8.6.17 109

11 Submitting Jobs from or to Windows hosts

The high priority job stays pending, it will get a reservation, but only after both lower priority

jobs are expected to finish:

$ qstat -j 3000000006
...
reservation 1: from 04/02/2015 13:33:54 to 04/02/2015 14:34:54

all.q@hookipa: 1

We want the high priority job to get started immediately, therefore we trigger a manual

preemption of the two lower priority jobs:

$ qmod -p 3000000006 3000000004 3000000005 P
Accepted preemption request for preemptor candidate 3000000006

The lower priority jobs get preempted, the high priority job can start:

$ qstat
job-ID prior name user state submit/start at queue jclass slots ja-task-ID

3000000006 0.60361 sleep joga r 04/02/2015 12:37:50 all.q@waikiki 1
3000000004 0.55476 sleep joga P 04/02/2015 12:32:54 1
3000000005 0.55476 sleep joga P 04/02/2015 12:32:54 1

Resources which have been preempted are shown in qstat -j. In order for the preemptees

to be able to resume work as soon as possible, preempted jobs get a resource reservation

for the resources they released, e.g.

$ qstat -j 3000000004
...
preempted 1: license, slots
usage 1: wallclock=00:04:45, cpu=00:00:00, mem=0.00015 GBs, io=0.00009,

vmem=19.414M, maxvmem=19.414M
reservation 1: from 04/02/2015 13:38:50 to 05/09/2151 19:07:05

all.q@waikiki: 1

11 Submitting Jobs from or to Windows hosts

Registering User passwords

In order to execute a job on a Windows execution host, Univa Grid Engine has to log on as

the job user on this host. For this, Univa Grid Engine needs the user’s password. Use the

sgepasswd command on a UNIX Univa Grid Engine submit or administrative host to register
the user password. The sgepasswd command encrypts the password and stores it in the
$SGE_ROOT/$SGE_CELL/common/sgepasswd file.

Network shares on the Windows execution host

Grid Engine Users’s Guide v 8.6.17 110

11 Submitting Jobs from or to Windows hosts

If a mounted network drive (net use x: \\server\share) is used in the path to the job
binary or in some argument to the job, this often does not work. Even if the job user has

persistent mounts on the Windows execution host or if the job user is logged on to the

Windows execution host and has created some mounts manually, these are not available for

the job. The job runs in a separate session, manually created mounts do not exist there, and

persistent mounts show inconsistent behaviour, so they should be avoided, too. Instead,

UNC paths should be used.

E.g.

> net use x: \\server\share
> qsub -b y x:\path\job.exe

will not work, while

> qsub -b y \\server\share\path\job.exe

should work.

Submitting Jobs from or to Windows hosts

If a job is submitted from or to a Windows host, it has to be taken care of some of the

differences between UNIX and Windows. It has to be distinguished between three different

cases:

1. Job submission from a Windows submit host to a Windows execution host

2. Job submission from a Windows submit host to a UNIX execution host

3. Job submission from an UNIX submit host to a Windows execution host

So generally spoken, if the cluster consists of a mixture of Windows and UNIX hosts, for all

jobs the destination architecture should be specified, either directly or indirectly.

11.1 Job submission from a Windows submit host to a Windows

execution host

This is an example job that contains all elements that differ from a normal UNIX-to-UNIX job

submission:

> qsub -o /tmp/$JOB_ID.out -b y cmd.exe /c %SGE_ROOT%\examples\jobs\sleeper.bat

It contains:

• Paths in arguments to the submit client have to be in UNIX format: -o /tmp/$JOB_ID.out
• Prevent job script transfer: -b y
• The job itself, which is the interpreter for the script: cmd.exe
• Paths in arguments to the job have are not mapped by Univa Grid Engine:

%SGE_ROOT%\examples\jobs\sleeper.bat

Grid Engine Users’s Guide v 8.6.17 111

11 Submitting Jobs from or to Windows hosts

Paths in arguments have to be in UNIX format

The Univa Grid Engine submit clients cannot handle paths in Windows/DOS or UNC format.

The parser of these clients will reject all paths in arguments to the client itself that are not in

UNIX format. Thus, it is necessary to specify these paths in UNIX format.

If these paths are to be evaluated on the Windows execution host, the path mapping file

must contain the corresponding entry, so the execution daemon can translate the UNIX

path to the Windows path.

In this example, the variable $JOB_ID is used in the path. This works, because this variable
is set on the Windows execution host in the execution daemon. The execution daemon

resolves these variables in UNIX format properly, no matter if on Windows or UNIX.

Prevent job script transfer

This is necessary because the job - cmd.exe - is a binary that is already located on the
Windows execution host.

The job itself - the interpreter for the script

On Windows, there is no hashbang magic, so the submitter must tell the execution daemon

what interpreter there is to be started in order to execute the “sleeper.bat” script. The

“/c %SGE_ROOT%\examples\jobs\sleeper.bat” are just arguments to the interpreter. The
interpreter already exists on the execution host, so Univa Grid Engine does not have to

transfer it from the submit host to the execution host. This is denoted by the “-b y” option.

Paths in the job arguments are not touched by Univa Grid Engine

Univa Grid Engine has no idea what the arguments to the job mean or where they are

evaluated, so Univa Grid Engine cannot map paths in the arguments to the job. They have

to be specified in the format that can be used by the job itself.

Examples:

• Submit a binary job:

> qsub -o /home/jdoe/outfile.txt -j y -N myjob -b y notepad.exe

• Submit an interactive job:

> qrsh hostname

11.1.1 Running Jobs in the foreground

Some Windows applications do not start in the background, i.e. if they are not started in a

Windows session that has a visible desktop. This desktop may be visible on the screen that

is physically attached to the host, or in any Remote Desktop session or similar. Furthermore,

some Windows applications open a MessageBox in case of errors, even if they are designed

to run in background. Also Windows itself might show a MessageBox if e.g. a DLL is missing

to run the application.

In order to allow these jobs to run or to see the error MessageBoxes, Univa Grid Engine

allows to start jobs in the foreground, even on a foreign desktop. A job can request to be

Grid Engine Users’s Guide v 8.6.17 112

11 Submitting Jobs from or to Windows hosts

started in the foreground by requesting the display_win_gui attribute (short: dwg), which is
of type BOOL.

Example:

> qsub -l display_win_gui=true -b y notepad.exe

should start the Windows notepad on a Windows execution host, allowing it to show it’s

window on the currently visible desktop.

If no desktop is visible at all, this job will fail!

Running foreground jobs in the background

It is also possible to force a job to run in the background even if it requests the

display_win_gui attribute. This can be used in job dependencies - if two jobs have to run
on the same host and the second job has to run in the foreground, the first still can run in

the background, but the Scheduler of Univa Grid Engine needs the information that it has to

select a Windows execution host that provides display_win_gui=true already for the first
job.

This feature is enabled by setting the SGE_BACKGND_MODE in the job environment to 1, e.g.:

> qsub -l display_win_gui=true -v SGE_BACKGND_MODE=1 -b y notepad.exe

Because this doesn’t work for certain applications which put themselves in the foreground,

there is an option to redirect the GUI of such jobs to an invisible Window station and desktop.

This feature is enabled by setting the SGE_DWG_DESKTOP in the job environment accordingly.
These settings are supported: * service to use a desktop the services Window station in
logon session 0 to create a new desktop for the job’s GUI there. The SGE_BACKGND_MODE
variable is ignored in this case. * none, any unsupported value or omit the SGE_DWG_DESKTOP
environment variable to use the old behaviour, i.e. let UGE search for a desktop to display

the GUI on. SGE_BACKGND_MODE is obeyed like described above.

E.g.:

> qsub -l display_win_gui=true -v SGE_DWG_DESKTOP=service -b y notepad.exe

starts the job in session 0 (the services session), creates a new Window station and desktop

for the GUI of the job and associates the job with this desktop. The desktop is invisible but

still the job application can use all functionality a Window station and desktop provide.

11.2 Job submission from an UNIX submit host to a Windows

execution host

In general, the same rules apply as for job submission from a Windows submit host to a

Windows execution host. The only thing to take care of is the shell on the submit host, if

a path in Windows format is specified on the command line, the shell will consume the

backslashes, so the backslashes have to be doubled. Furthermore, variables that are to be

resolved on the submit host have to be specified in UNIX format (starting with a $ sign) -
but take care to which format variables that contain a path do resolve! The path in the job

argument of the test job:

Grid Engine Users’s Guide v 8.6.17 113

11 Submitting Jobs from or to Windows hosts

qsub -b y cmd.exe /c $SGE_ROOT\\examples\\jobs\\sleeper.bat

would resolve to e.g. /opt/uge\examples\jobs\sleeper.bat, which doesn’t exist on the
Windows execution host, so the proper way to specify this path is to manually map the path

and specify it as an absolute path:

qsub -b y cmd.exe /c \
\\\\server\\opt\\uge\\examples\\jobs\\sleeper.bat

which resolves to \\server\opt\uge\examples\jobs\sleeper.bat which exists on the Win-
dows execution host.

If a Univa Grid Engine variable is used as argument to an Univa Grid Engine option, i.e. if

it has to be resolved on the execution host, not on the submit host, the $ sign has to be
escaped, too:

qsub -o /tmp/\$JOB_ID.out -b y cmd.exe /c \
\\\\server\\opt\\uge\\examples\\jobs\\sleeper.bat

11.3 Job submission from a Windows submit host to an UNIX

execution host

These jobs can be submitted like jobs from UNIX to UNIX, only paths in arguments to the job

have to be mapped manually and again, paths in variables are resolved on the submit host,

likely to the wrong format:

> qsub %SGE_ROOT%/examples/jobs/sleeper.bat

would resolve to \\server\opt\uge/examples/jobs/sleeper.bat which doesn’t exist on the
submit host, so again manual mapping is needed:

> qsub /opt/uge/examples/jobs/sleeper.bat

resolves to /opt/uge/examples/jobs/sleeper.bat, which should perfectly work on the UNIX
execution host.

Grid Engine Users’s Guide v 8.6.17 114

	Overview of Basic User Tasks
	A Simple Workflow Example
	Displaying Univa Grid Engine Status Information
	Cluster Overview
	Hosts and Queues
	Requestable Resources
	User Access Permissions and Affiliations

	Submitting Batch Jobs
	What is a Batch Job?
	How to Submit a Batch Job
	Example 1: A Simple Batch Job
	Example 2: An Advanced Batch Job
	Example 3: Another Advanced Batch Job
	Example 4: A Simple Binary Job

	Specifying Requirements
	Request Files
	Requests in the Job Script

	Using Job Classes to Prepare Templates for Jobs
	Examples Motivating the Use of Job Classes
	Defining Job Classes
	Attributes describing a Job Class
	Example 1: Job Classes - Identity, Ownership, Access
	Attributes to Form a Job Template
	Example 2: Job Classes - Job Template
	Access Specifiers to Allow Deviation
	Example 3: Job Classes - Access Specifiers
	Different Variants of the same Job Class
	Example 4: Job Classes - Multiple Variants
	Enforcing Cluster Wide Requests with the Template Job Class

	Relationship Between Job Classes and Other Objects
	Resources Available for Job Classes
	Defining Job Class Limits
	JSV and Job Class Interaction

	Commands to Adjust Job Classes
	Creating, Modifying and Deleting Job Classes
	States of Job Classes

	Using Job Classes to Submit New Jobs
	Example: Submit a Job Class Job and Adjust Some Parameters
	Status of Job Classes and Corresponding Jobs

	Monitoring and Controlling Jobs
	Getting Status Information on Jobs
	Deleting a Job
	Re-queuing a Job
	Modifying a Waiting Job
	Altering Job Requirements

	Changing Job Priority
	Obtaining the Job History

	Other Job Types
	Array Jobs
	Interactive Jobs
	qrsh and qlogin
	qmake
	qsh

	Parallel Jobs
	Parallel Environments
	Submitting Parallel Jobs
	Parallel Jobs and Core Binding

	Jobs with Core Binding
	Showing Execution Host Topology Related Information
	Requesting Execution Hosts Based on the Architecture
	Requesting Specific Cores
	PE-Jobs with core binding

	NUMA Aware Jobs: Jobs with Memory Binding and Enhanced Memory Management
	Memory Allocation Strategy round_robin
	Memory Allocation Strategy cores and cores:strict
	Memory Allocation Strategy nlocal

	Checkpointing Jobs
	User-Level Checkpointing
	Kernel-Level Checkpointing
	Checkpointing Environments
	Submitting a Checkpointing Job

	Immediate Jobs
	Reservations
	Advance Reservations
	Standing Reservations

	Jobs using Docker Containers
	Running a sequential job in a Docker container
	Running a parallel Job in Docker containers
	Running MPI jobs in Docker containers
	Running an array Job in Docker containers
	Running a Job in a Docker image that is not available locally
	Using placeholders to dynamically define Docker options
	Support for nvidia-docker 2.0

	Getting a Consistent View onto the System by Using Sessions
	Communication with Univa Grid Engine without using Sessions
	Using sessions to communicate with the system

	Submission, Monitoring and Control via an API
	The Distributed Resource Management Application API (DRMAA)
	Basic DRMAA Concepts
	Supported DRMAA Versions and Language Bindings
	When to Use DRMAA
	Environment Variable Influences
	Examples
	Building a DRMAA Application with C**
	Building a DRMAA Application with Java

	Further Information

	Advanced Concepts
	Job Dependencies
	Examples

	Using Environment Variables
	Using the Job Context
	Transferring Data
	Transferring Data within the Job Script
	Using Delegated File Staging in DRMAA Applications

	Manual, Semi-Automatic and Automatic Preemption
	Preemption Terms
	Preemption Trigger and Actions
	Manual Preemption
	Preemption Configuration
	Preemption in Combination with License Orchestrator
	Common Use Cases

	Submitting Jobs from or to Windows hosts
	Job submission from a Windows submit host to a Windows execution host
	Running Jobs in the foreground

	Job submission from an UNIX submit host to a Windows execution host
	Job submission from a Windows submit host to an UNIX execution host

